一家小型英国初创公司开发了一种算法,该算法可显著降低运行计算所需的量子计算能力水平,从而有望为开发特殊新材料铺平道路。
Phasecraft公司的科学家和布里斯托大学(University of Bristol)的研究人员共同研究发现,按照现在科技发展的速度,量子物理学中的一个重大难题(用当今超级计算机难以解决)有望会在三年内用量子计算机解决。这比大多数专家先前的预测要快得多。
量子计算机是利用量子物理的特殊属性来运行计算的机器。因此,量子计算机有可能比当今最快的超级计算机强大得多。
许多公司开始试用量子计算机,量子计算机由IBM、霍尼韦尔和谷歌等公司以及一些初创公司通过云计算接口提供。但到目前为止,大多数企业只在这些机器上运行概念验证项目,这些机器还无法模拟许多复杂的系统,例如模拟亚原子或分子级相互作用。
去年,谷歌宣布已经实现了“量子霸权(quantum supremacy)”,这是量子计算领域的一个里程碑,即使用量子计算机运行传统计算机无法在合理时间范围内完成的计算。上周,一个中国研究小组宣布,他们已经用另一种量子计算机取得了类似的突破。
“玩具问题”
但在这两种情况下,量子计算机所解决的特殊难题是Phasecraft联合创始人兼伦敦大学学院(University College London)量子物理学教授约翰•莫顿所述的“玩具问题”,即这些计算仅仅是为了证明量子计算机可以完成普通超级计算机做不到的事情。而这些问题对实际应用并无太大的意义,例如弄清楚如何开发更高效的肥料制造工艺或更好的电池。
Phasecraft在美国物理学会(American Physical Society)出版的学术期刊《物理评论B》(Physical Review B)上今天发表的一篇同行评议论文指出了另一种情况。文中提及一个称为费米-哈伯德模型(Fermi-Hubbard model)的难题,描述了一类称为费米子(包含电子的一组费米子)的亚原子粒子在固体中跳跃的行为。能够计算出这个模型是向制造出无需保持超低温也能具备超导特性的材料迈出的重要一步。但是,对于一个有超过几十个粒子位置的系统而言,这一性能是当今传统超级计算机无法企及的。
Phasecraft研究人员证实,一种结合量子元素和经典元素的算法可以使用一台约有8,000个量子门(即量子计算机可以执行的逻辑操作次数)的量子计算机来求解大型固体的费米-哈伯德模型。这是以前认为求解该模型所需的量子门数量的十分之一。
马里兰大学(University of Maryland)计算机科学家安德鲁•柴尔德斯表示:“他们的工作表明,较浅电路可以提供这个模型的有用信息,使之更适合实际量子硬件使用,这太令人惊讶了。”
现有的量子计算机已经有足够的量子处理单元(即量子比特),理论上可以执行如此多次逻辑运算,但到目前为止,科学家们尚未弄清楚如何构建这种规模的电路。谷歌的量子优越性实验是在54个量子比特的Sycamore量子处理器上进行的,使用了由430个双量子比特门和1,113个单量子比特门组成的电路。
IBM已经宣布计划在2023年前推出有1,000个量子比特的量子计算机。有了这种规模的量子计算机,科学家们就有可能构建具有足够量子门的电路,就可以使用Phasecraft演示的算法来求解费米-哈伯德模型。Phasecraft联合创始人兼董事及布里斯托大学量子计算机研究人员阿什利•蒙塔纳罗说:“我们有可能在未来两三年内做一些激动人心的事情。”
融资协议
Phasecraft已与制造量子计算机的初创公司Rigetti(总部位于加州)及谷歌建立了合作关系,该公司致力于与材料科学和化学公司合作设计量子算法,使其能够使用量子计算机解决难题。
这家初创公司目前约有10名员工,公司周四宣布,在伦敦风投公司LocalGlobe牵头的一轮融资中,公司获得了500万美元种子资金,另一家专门从事早期投资的伦敦风投公司Episode 1也参与了此轮融资。演唱会信息和票务服务应用程序Songkick的前联合创始人伊恩•霍加斯现在是著名的天使投资人和种子投资人,将出任Phasecraft的董事会主席。
新的投资使Phasecraft自2018年成立以来通过风险投资和研究资助筹集的资金总额达到740万美元。该公司已经收到了UCL技术基金(UCL Technology Fund)和Parkwalk Advisors的前期融资以及创新英国(Innovate UK)基金的资助。(财富中文网)
翻译:郝秀
审校:汪皓
一家小型英国初创公司开发了一种算法,该算法可显著降低运行计算所需的量子计算能力水平,从而有望为开发特殊新材料铺平道路。
Phasecraft公司的科学家和布里斯托大学(University of Bristol)的研究人员共同研究发现,按照现在科技发展的速度,量子物理学中的一个重大难题(用当今超级计算机难以解决)有望会在三年内用量子计算机解决。这比大多数专家先前的预测要快得多。
量子计算机是利用量子物理的特殊属性来运行计算的机器。因此,量子计算机有可能比当今最快的超级计算机强大得多。
许多公司开始试用量子计算机,量子计算机由IBM、霍尼韦尔和谷歌等公司以及一些初创公司通过云计算接口提供。但到目前为止,大多数企业只在这些机器上运行概念验证项目,这些机器还无法模拟许多复杂的系统,例如模拟亚原子或分子级相互作用。
去年,谷歌宣布已经实现了“量子霸权(quantum supremacy)”,这是量子计算领域的一个里程碑,即使用量子计算机运行传统计算机无法在合理时间范围内完成的计算。上周,一个中国研究小组宣布,他们已经用另一种量子计算机取得了类似的突破。
“玩具问题”
但在这两种情况下,量子计算机所解决的特殊难题是Phasecraft联合创始人兼伦敦大学学院(University College London)量子物理学教授约翰•莫顿所述的“玩具问题”,即这些计算仅仅是为了证明量子计算机可以完成普通超级计算机做不到的事情。而这些问题对实际应用并无太大的意义,例如弄清楚如何开发更高效的肥料制造工艺或更好的电池。
Phasecraft在美国物理学会(American Physical Society)出版的学术期刊《物理评论B》(Physical Review B)上今天发表的一篇同行评议论文指出了另一种情况。文中提及一个称为费米-哈伯德模型(Fermi-Hubbard model)的难题,描述了一类称为费米子(包含电子的一组费米子)的亚原子粒子在固体中跳跃的行为。能够计算出这个模型是向制造出无需保持超低温也能具备超导特性的材料迈出的重要一步。但是,对于一个有超过几十个粒子位置的系统而言,这一性能是当今传统超级计算机无法企及的。
Phasecraft研究人员证实,一种结合量子元素和经典元素的算法可以使用一台约有8,000个量子门(即量子计算机可以执行的逻辑操作次数)的量子计算机来求解大型固体的费米-哈伯德模型。这是以前认为求解该模型所需的量子门数量的十分之一。
马里兰大学(University of Maryland)计算机科学家安德鲁•柴尔德斯表示:“他们的工作表明,较浅电路可以提供这个模型的有用信息,使之更适合实际量子硬件使用,这太令人惊讶了。”
现有的量子计算机已经有足够的量子处理单元(即量子比特),理论上可以执行如此多次逻辑运算,但到目前为止,科学家们尚未弄清楚如何构建这种规模的电路。谷歌的量子优越性实验是在54个量子比特的Sycamore量子处理器上进行的,使用了由430个双量子比特门和1,113个单量子比特门组成的电路。
IBM已经宣布计划在2023年前推出有1,000个量子比特的量子计算机。有了这种规模的量子计算机,科学家们就有可能构建具有足够量子门的电路,就可以使用Phasecraft演示的算法来求解费米-哈伯德模型。Phasecraft联合创始人兼董事及布里斯托大学量子计算机研究人员阿什利•蒙塔纳罗说:“我们有可能在未来两三年内做一些激动人心的事情。”
融资协议
Phasecraft已与制造量子计算机的初创公司Rigetti(总部位于加州)及谷歌建立了合作关系,该公司致力于与材料科学和化学公司合作设计量子算法,使其能够使用量子计算机解决难题。
这家初创公司目前约有10名员工,公司周四宣布,在伦敦风投公司LocalGlobe牵头的一轮融资中,公司获得了500万美元种子资金,另一家专门从事早期投资的伦敦风投公司Episode 1也参与了此轮融资。演唱会信息和票务服务应用程序Songkick的前联合创始人伊恩•霍加斯现在是著名的天使投资人和种子投资人,将出任Phasecraft的董事会主席。
新的投资使Phasecraft自2018年成立以来通过风险投资和研究资助筹集的资金总额达到740万美元。该公司已经收到了UCL技术基金(UCL Technology Fund)和Parkwalk Advisors的前期融资以及创新英国(Innovate UK)基金的资助。(财富中文网)
翻译:郝秀
审校:汪皓
A small U.K. startup has developed an algorithm that significantly reduces the level of quantum computing power needed to run a calculation that could pave the way for the development of exotic new materials.
Scientists from the company, Phasecraft, along with researchers from the University of Bristol, showed that an important problem from quantum physics—one that is too difficult to solve on today’s supercomputers—could be within the reach of quantum computers within three years, given current rates at which the technology is developing. That is much sooner than most experts had previously forecast.
Quantum computers are machines that harness the peculiar properties of quantum physics to run their calculations. This makes them potentially much more powerful than today’s fastest supercomputers.
Many companies are beginning to experiment with quantum computers, which are being offered through cloud computing interfaces from companies such as IBM, Honeywell, and Google, as well as a number of startups. But so far, most businesses have only run proof-of-concept projects on these machines, which are not yet powerful enough to simulate many complex systems, such as the modeling of subatomic or molecular level interactions.
Last year, Google claimed it had achieved a milestone called “quantum supremacy,” using a quantum computer to run a calculation that a conventional computer could not crunch in a reasonable time span. Last week, a group of Chinese researchers said they had achieved a similar breakthrough using a different kind of quantum computer.
“Toy problems”
But in both cases, the particular problems that the quantum computers solved were what John Morton, a Phasecraft cofounder and professor of quantum physics at University College London, calls “toy problems”—calculations formulated solely to show that the quantum computer could do something a regular supercomputer can’t. They weren’t problems with clear implications for real world applications, such as figuring out how to create more efficient fertilizer manufacturing processes or better batteries.
What Phasecraft shows in a peer-reviewed paper published today in the academic journal Physical Review B, published by the American Physical Society, is different. It involves a problem called the Fermi-Hubbard model, which describes the behavior of a class of subatomic particles known as fermions—a group that includes electrons—as they hop around within a solid. Being able to compute this model is an important step toward creating materials that will exhibit superconducting properties without the need to keep them at ultra-freezing temperatures. But doing so for a system with more than a few tens of particle positions is beyond the reach of today’s conventional supercomputers.
The Phasecraft researchers proved that a kind of algorithm that combines quantum and classical elements could be used to solve the Fermi-Hubbard model for a large solid using a quantum computer with about 8,000 gates, a term that refers to the number of logical operations a quantum computer can perform. That is a tenth of the number of quantum gates that were previously thought necessary to solve the model.
“Their work suggests that surprisingly low-depth circuits could provide useful information about this model, making it more accessible to realistic quantum hardware,” Andrew Childs, a computer scientist at the University of Maryland, said of the research.
Existing quantum computers already have enough quantum processing units—known as qubits—to in theory perform this number of logical operations, but so far scientists have not figured out how to build circuits of that size. Google’s quantum supremacy experiment, which it performed on its 54-qubit Sycamore quantum processor, used a circuit consisting of 430 two-qubit gates and 1,113 single qubit gates.
IBM has already announced its plans to have a 1,000-qubit quantum computer available by 2023. With a quantum computer of that size, it is possible scientists will be able to build a circuit with enough gates to solve the Fermi-Hubbard model using the algorithm Phasecraft demonstrated. “We think it is plausible to do exciting things in the next two- to three-year period,” Ashley Montanaro, one of Phasecraft’s cofounders and directors, as well as a quantum computer researcher at the University of Bristol, said.
Funding deal
Phasecraft, which has partnerships with Rigetti, a California-based startup building quantum computers, and Google, is focused on working with materials science and chemical companies to design quantum algorithms that will allow them to start solving complex problems using quantum computers.
The startup, which currently employs about 10 people, also announced on Thursday that it has received $5 million in seed funding in a financing round led by LocalGlobe, a London venture capital firm, with participation from Episode 1, another London venture firm specializing in early stage investment. Ian Hogarth, the former cofounder of concert discovery app Songkick and now a prominent angel and seed investor, is joining Phasecraft’s board as chairperson.
The new investment brings the total Phasecraft has raised, in both venture funding and research grants, since its founding in 2018, to $7.4 million. The company had received prior funding from the UCL Technology Fund and Parkwalk Advisors and grants from Innovate UK.