“嘿,Siri,今天天气如何?”这是苹果的虚拟助手经常被问及的问题,也一定程度上说明了人工智能已经走进我们的生活。
这样的体验在潜移默化之中改变了人类的生活细节,不管是设置闹钟、打开流媒体平台的推荐节目,或是撰写电子邮件结尾,人工智能都能够轻松做到,大大便利了我们的生活。
我们很少去刻意察觉人工智能带来的变化,但它们一旦出现失误便会引发公众关注:比如波音(Boeing)的737 Max飞机的安全系统曾经存在缺陷,导致这款喷气式飞机向下俯冲;又或者,无人驾驶汽车出现故障被召回。
人工智能可谓神通广大,大到维系公众安全和抗击新冠疫情,小到从智能手机中找到某一张照片,这些任务它都可以出色地完成。不过正是这股巨大潜力及其爆炸式发展,让我们深入思考一个问题:如何通过可靠的方式将其优势最大化,同时防止错误和灾难发生?答案其实就藏在人工智能和用户的关系中:人工智能应该根植于人类的需求。
人工智能的最佳使命可以说是成为强大的辅助工具,将人类从单调或过于繁重的任务中解放出来,从而让人类最大限度地发挥自身潜力。我们应该通过设计,将这一使命交付给人工智能。简而言之,人工智能的有效性受制于其用户体验,我们在持续开发人工智能系统的过程中必须关注这一环节。如果说人工智能是工具,那么设计便是人类使用这一工具的把手或握杆。
我们的确需要这样的工具。信息时代让我们时时刻刻都在与数据打交道,但人类所能处理的数据实在有限。我们可以把大脑想象成一个开口,它能够处理的数据流就只有这么多。优秀的人工智能设计能够检测哪些是重要数据,并只让它们通过这个开口,从而减轻我们的负载。
在实践中,我们可以通过以下三条规则来打造既可靠又强大的人工智能工具,同时又保证以人为本:
先有问题后有科技,而不是反过来。人们买铲子并不是为了拥有它们,而是为了挖洞。很多时候,我们都是先创造高科技,再为其找一个用途。
我们应该先了解客户的需求,再打造最好的科技来满足它们。举个例子,让实时呼叫转录协助警察部门接听报警电话。人工智能可以通过搜索和标记关键信息(例如紧急情况发生的位置和类型)来满足用户的需求,使接听的人能够专心解决求救者的问题。
接纳明确性和模糊性,以保留人类的能动性。人工智能作为一项辅助技术,其工作本质是评估事件发生的可能性。那么,它就必须用通俗易懂的方式来呈现信息,其中包括表达不确定性和疑问的能力。举个例子,我们在设计应用人工智能的转录系统时,可以让其改变录入信息的字体来指示含义不明确的信息。如果词汇越难辨读,便代表人工智能越不确定是否正确转录了信息。
另一种方法则是传递没有歧义的结果,这会帮助人类缩小选择范围,也因此削弱了我们的能动性。在这一点上,不同的设计会有不同的结果。清晰的沟通方式能够带来双向的好处:人工智能越了解用户,就越可以快速识别重要信息。
此外,如果信息足够透明,也能够帮助一些用户对其他人类的利益尽责。科幻小说家亚瑟·查尔斯·克拉克曾经说过:“任何足够先进的科技都与魔法无异。”但是,对于公共安全官员等需要就决策原因进行沟通的用户来说,人工智能算法输入和产出内容之间的关系必须明确。
适当协调使用环境,以分清责任界限。设计人工智能来解决特定问题,并打造一套具体的工作流程,这看似不符合正常预期,但其实从长远来看,这种经过实测的方法反而可以更集中地传递用户体验的价值。它让人工智能根植于一个更宏大的工作流程,通过政策和程序来减少道德过失、滥用及误用情况,从而减轻我们对隐私的担忧。
上文提到的波音737 Max飞机的例子,便阐明了人工智能的使用环境应该以人为本。这款飞机的软件采用了这样的设计:如果传感器检测到飞机仰角过大,便会降低机头。而如果传感器失灵,飞行员只有几秒钟的时间来解除该系统,但其实他们并不知道飞机中有这样一项设计。
设计其实和人工智能一样,虽然无处不在,但往往不引人注意。你喜欢坐这把椅子而非另一把,你选择这款应用程序而非功能一致的另一款,这些其实都和设计有关。
如果我们在设计工作流程时能够以终端用户为重,或许系统就可以提醒工作人员注意显而易见的危险,并给出清晰的指示让他们改用手控。一个更加优秀的人工智能设计,应该专心协助人类更好地决策,而不是取代人类智慧,这样或许就能防止悲剧。
本文作者马赫什·萨普塔里希博士是摩托罗拉系统公司(Motorola Solutions)的执行副总裁兼软件企业及手机视频部的首席技术官。他在卡耐基梅隆大学(Carnegie Mellon University)获得了机器学习博士学位,是一位备受尊敬的技术专家和思想领袖,大量科学出版物、文章和专利出自其手。(财富中文网)
译者:Kayson
“嘿,Siri,今天天气如何?”这是苹果的虚拟助手经常被问及的问题,也一定程度上说明了人工智能已经走进我们的生活。
这样的体验在潜移默化之中改变了人类的生活细节,不管是设置闹钟、打开流媒体平台的推荐节目,或是撰写电子邮件结尾,人工智能都能够轻松做到,大大便利了我们的生活。
我们很少去刻意察觉人工智能带来的变化,但它们一旦出现失误便会引发公众关注:比如波音(Boeing)的737 Max飞机的安全系统曾经存在缺陷,导致这款喷气式飞机向下俯冲;又或者,无人驾驶汽车出现故障被召回。
人工智能可谓神通广大,大到维系公众安全和抗击新冠疫情,小到从智能手机中找到某一张照片,这些任务它都可以出色地完成。不过正是这股巨大潜力及其爆炸式发展,让我们深入思考一个问题:如何通过可靠的方式将其优势最大化,同时防止错误和灾难发生?答案其实就藏在人工智能和用户的关系中:人工智能应该根植于人类的需求。
人工智能的最佳使命可以说是成为强大的辅助工具,将人类从单调或过于繁重的任务中解放出来,从而让人类最大限度地发挥自身潜力。我们应该通过设计,将这一使命交付给人工智能。简而言之,人工智能的有效性受制于其用户体验,我们在持续开发人工智能系统的过程中必须关注这一环节。如果说人工智能是工具,那么设计便是人类使用这一工具的把手或握杆。
我们的确需要这样的工具。信息时代让我们时时刻刻都在与数据打交道,但人类所能处理的数据实在有限。我们可以把大脑想象成一个开口,它能够处理的数据流就只有这么多。优秀的人工智能设计能够检测哪些是重要数据,并只让它们通过这个开口,从而减轻我们的负载。
在实践中,我们可以通过以下三条规则来打造既可靠又强大的人工智能工具,同时又保证以人为本:
先有问题后有科技,而不是反过来。人们买铲子并不是为了拥有它们,而是为了挖洞。很多时候,我们都是先创造高科技,再为其找一个用途。
我们应该先了解客户的需求,再打造最好的科技来满足它们。举个例子,让实时呼叫转录协助警察部门接听报警电话。人工智能可以通过搜索和标记关键信息(例如紧急情况发生的位置和类型)来满足用户的需求,使接听的人能够专心解决求救者的问题。
接纳明确性和模糊性,以保留人类的能动性。人工智能作为一项辅助技术,其工作本质是评估事件发生的可能性。那么,它就必须用通俗易懂的方式来呈现信息,其中包括表达不确定性和疑问的能力。举个例子,我们在设计应用人工智能的转录系统时,可以让其改变录入信息的字体来指示含义不明确的信息。如果词汇越难辨读,便代表人工智能越不确定是否正确转录了信息。
另一种方法则是传递没有歧义的结果,这会帮助人类缩小选择范围,也因此削弱了我们的能动性。在这一点上,不同的设计会有不同的结果。清晰的沟通方式能够带来双向的好处:人工智能越了解用户,就越可以快速识别重要信息。
此外,如果信息足够透明,也能够帮助一些用户对其他人类的利益尽责。科幻小说家亚瑟·查尔斯·克拉克曾经说过:“任何足够先进的科技都与魔法无异。”但是,对于公共安全官员等需要就决策原因进行沟通的用户来说,人工智能算法输入和产出内容之间的关系必须明确。
适当协调使用环境,以分清责任界限。设计人工智能来解决特定问题,并打造一套具体的工作流程,这看似不符合正常预期,但其实从长远来看,这种经过实测的方法反而可以更集中地传递用户体验的价值。它让人工智能根植于一个更宏大的工作流程,通过政策和程序来减少道德过失、滥用及误用情况,从而减轻我们对隐私的担忧。
上文提到的波音737 Max飞机的例子,便阐明了人工智能的使用环境应该以人为本。这款飞机的软件采用了这样的设计:如果传感器检测到飞机仰角过大,便会降低机头。而如果传感器失灵,飞行员只有几秒钟的时间来解除该系统,但其实他们并不知道飞机中有这样一项设计。
设计其实和人工智能一样,虽然无处不在,但往往不引人注意。你喜欢坐这把椅子而非另一把,你选择这款应用程序而非功能一致的另一款,这些其实都和设计有关。
如果我们在设计工作流程时能够以终端用户为重,或许系统就可以提醒工作人员注意显而易见的危险,并给出清晰的指示让他们改用手控。一个更加优秀的人工智能设计,应该专心协助人类更好地决策,而不是取代人类智慧,这样或许就能防止悲剧。
本文作者马赫什·萨普塔里希博士是摩托罗拉系统公司(Motorola Solutions)的执行副总裁兼软件企业及手机视频部的首席技术官。他在卡耐基梅隆大学(Carnegie Mellon University)获得了机器学习博士学位,是一位备受尊敬的技术专家和思想领袖,大量科学出版物、文章和专利出自其手。(财富中文网)
译者:Kayson
"Hey Siri, what's the weather?" It's one of the most common questions asked of Apple’s virtual assistant, but it’s also one of the many ways artificial intelligence (A.I.) is already a part of your life.
Such experiences have become the ambient noise of our daily lives, making things easier in a thousand little-noticed ways like setting a timer, populating Netflix recommendations, or proposing words to finish an email.
What does grab the public’s attention are A.I. failures: The airplane safety system that reportedly caused Boeing 737 Max jets to nose-dive or the recall of self-driving cars.
A.I.’s vast potential–whether in aiding public safety, fighting the COVID-19 pandemic or helping you find a photograph on your smartphone–and explosive growth raise the question of how to responsibly maximize its upside while safeguarding against mistakes and disasters. The answer lies in the relationship between A.I. and its users: rooting A.I. in human need.
A.I’s best mission statement is arguably to maximize human potential by being a powerful assistive tool that liberates human intelligence from mundane or overwhelming tasks. Design is that mission’s connective tissue. Simply put, an A.I.’s effectiveness is bounded by its user’s experience, a link upon which we must focus as we continue to evolve A.I. systems. If A.I. is a tool, design is the handle or grip which allows humans to wield it.
And we need those tools. While the information age has left us awash in data, humans can only process a finite amount of it. Think of our brains as openings through which only so much data can flow. Well-designed A.I. can identify what’s important, limiting what we try to squeeze through the opening.
In practical terms, there are three rules for creating responsible, powerful A.I. tools by keeping them human-centered:
Suit the tech to the problem, not the other way around. People don’t buy shovels to have them–they want to dig holes. Too often in high tech, we create first and find a use later.
Identify customer needs and then design the best technology to solve them. For example, real-time call transcription can assist police departments in taking 911 calls. A.I. can address the user's need by searching for and flagging key information, such as location and type of emergency, enabling the respondent to focus on the caller and address their problem.
Preserve human agency by embracing clarity–and ambiguity. As an assistive technology, and one which evaluates along a spectrum of likelihood, A.I. must be able to present information in an easily understandable way, including the ability to express uncertainty and doubt. For example, the A.I.-powered transcription can be designed to adjust the transcript’s font to indicate uncertainty. The harder to read a word, the less certain the A.I. is of having transcribed it properly.
The alternative–communicating results shorn of ambiguity–can erode human agency by narrowing options. Design is the difference. The benefits of clarity flow both ways: The better an A.I. understands its user, the more quickly it will be able to identify important information.
Transparency also helps users who are responsible to other human stakeholders. Arthur C. Clarke memorably said that “any sufficiently advanced technology is indistinguishable from magic.” However, for those who need to communicate why decisions were made, such as public safety officials, the relationship between what an A.I. algorithm produces and its inputs needs to be clear.
Optimize for accountability by properly contextualizing. Designing A.I. to solve unique problems and work in specific workflows might seem counterintuitive, but such a measured approach will mean a more focused delivery of user-experience value in the long run. It can allay privacy concerns, for example, by grounding A.I. in a larger workflow that has policies and procedures to mitigate against ethical lapses, misuses, and mistakes.
The example of the 737 Max illustrates the importance of ensuring a human-focused context. Its software was designed to lower the plane’s nose if a sensor detected that it was rising up too high. When that sensor malfunctioned, the pilots had only seconds to disengage the system–but they were unaware it was part of the airplane’s design.
Like A.I., design is everywhere and often goes unnoticed. It is the difference between your favorite chair and the one you avoid, or why you choose one app over another which performs much the same function.
A workflow that is focused on the end-users may have alerted the crew of the apparent danger and given them a clear way to override the A.I. Better design of A.I., which focuses on assisting humans to make better decisions and not replacing human intelligence, might have prevented a tragic outcome.
Mahesh Saptharishi, Ph.D, is the executive vice president and CTO of Software Enterprise & Mobile Video at Motorola Solutions. A highly respected technology expert and thought leader, Saptharishi earned a doctorate degree in machine learning from Carnegie Mellon University and has authored numerous scientific publications, articles, and patents.