首页 500强 活动 榜单 商业 科技 领导力 专题 品牌中心
杂志订阅

OpenAI恐遭遇芯片荒

JEREMY KAHN
2023-06-10

OpenAI联合创始人兼首席执行官山姆·阿尔特曼两周前在伦敦与软件开发者和初创公司CEO们召开了一次非公开会议。

文本设置
小号
默认
大号
Plus(0条)

据外泄的消息显示,OpenAI CEO山姆·阿尔特曼上个月在伦敦与软件开发者召开的闭门会议上表示,缺少专用计算机芯片打乱了公司的经营计划。图片来源:JOEL SAGET —— 法新社/盖蒂图片社

OpenAI的人工智能软件必须使用专用计算机芯片,而芯片荒阻碍了该公司的业务,并且除了ChatGPT以外,该公司并不打算发布面向消费者的产品。据报道,OpenAI联合创始人兼首席执行官山姆·阿尔特曼两周前在伦敦与软件开发者和初创公司CEO们召开了一次非公开会议。一位与会者的博客爆料称,阿尔特曼在会上披露了许多信息,以上的信息只是其中的两条。据称此次会议约有20人参会。最初发表这篇博客的页面显示,应OpenAI的要求,爆料此次闭门会议的账号已经关闭,但这并没有阻止人工智能界深入分析这位有影响力的CEO的(所谓的)言论。

一个互联网存档网站已经保存了一份原博客的副本,之后文章内容在社交媒体和程序员聚集的多个论坛上广泛传播。人工智能专家拉扎·哈毕比在博客中写道,阿尔特曼表示,OpenAI无法买到足够多运行人工智能应用需要使用的专用计算机芯片图形处理单元(GPU),这阻碍了公司的短期计划,也为使用OpenAI服务的开发者带来了麻烦。哈毕比是Humanloop公司的联合创始人兼CEO。哈毕比的初创公司位于伦敦,该公司率先提出了提高大语言模型训练效率的方法。大语言模型是OpenAI ChatGPT使用的基础技术。

GPU荒导致OpenAI更难支持用户通过大语言模型推送更多数据,并延缓了公司发布更多功能和服务的计划。该公司的ChatGPT等产品均以大语言模型作为核心。此外,博客中表示,芯片荒还降低了OpenAI现有服务的速度和可靠性,这会令客户不满,使他们不愿意基于OpenAI的技术开发企业应用。OpenAI在生成式人工智能繁荣中的先行者优势,也会因为芯片供应紧张而面临威胁,因为谷歌(Google)和其他知名度较低的竞争对手都有能力推出竞争性服务,而且开源竞争对手已经进一步站稳脚跟。

关于“语境窗口”

阿尔特曼列举了OpenAI因为硬件(如芯片)短缺无法开展的多项业务。哈毕比在博客中写道,其中包括向其GPT大语言模型的大多数客户提供更长的“语境窗口”。语境窗口决定了在模型中输入一条提示词可以调用的数据数量,以及模型的响应时间。大多数GPT-4用户的语境窗口支持的标记数量为8,000个(一个标记是人工智能模型进行预测所依据的一段数据,相当于约一个半英文单词)。OpenAI在3月宣布为其模型的精选客户提供支持32,000个标记的语境窗口,但很少有用户能够使用该功能,哈毕比的博客称,阿尔特曼将此归咎于GPU短缺。

全球大多数人工智能应用在GPU上训练和运行。GPU作为一种计算机芯片,通过高速并行处理进行数据分析。大多数GPU芯片来自一家公司,那就是英伟达(Nvidia),而且售价可能高达数千甚至数十万美元。市场观察家已经发现,由于英伟达与生成式人工智能繁荣的关联,其股价暴涨,而且其市值最近突破了1万亿美元。

哈毕比在博客中爆料,OpenAI联合创始人兼CEO还向开发者保证,除了ChatGPT以外,OpenAI没有计划发布任何面向消费者的产品。哈毕比称,许多参会的开发者告诉阿尔特曼,他们对于使用OpenAI的人工智能模型进行开发感到担心,因为无法确定OpenAI是否会发布竞争性产品。阿尔特曼表示,ChatGPT将是其唯一一款面向消费者的产品,而且公司的未来愿景是成为一款“超级智能的工作助手”,但OpenAI“不会涉足”许多需要使用GPT大语言模型的行业特定应用。

阿尔特曼还表示,他一个月前所说的“超大规模模型的时代”将要结束的观点被错误解读。他对开发者表示,他想要表达的意思是,OpenAI最强大的大语言模型GPT-4的规模已经足够庞大,因此公司不可能继续快速扩大人工智能系统的规模。他在伦敦会议上表示,OpenAI会继续创建更大的模型,但它们的规模只会有GPT-4的两倍或三倍,而不是扩大数百万倍。

爆料称,阿尔特曼在与开发者的对话中,还分享了OpenAI的近期发展规划。哈毕比的博客称,阿尔特曼表示,在2023年,OpenAI的目标是提高GPT-4的运行速度和降低其成本,提供更长的“语境窗口”以支持用户向OpenAI的GPT模型中输入更多数据并获得更长的输出结果,推出更方便客户根据具体使用案例调整GPT-4的方法,并支持ChatGPT及其大语言模型能够保留历史对话记忆,从而使用户想要继续未完成的对话或重复与模型的互动时,不需要每次都要重复按照相同的顺序输入提示。

阿尔特曼表示,公司明年的工作重点是发布GPT-4根据输入的图片输出结果的能力。OpenAI在3月发布该模型时演示了这项功能,但尚未向大多数客户开放。

哈毕比写道,在监管方面,阿尔特曼对开发者表示,他并不认为现有模型带来了任何严重的风险,而且“对现有模型进行监管或者禁用将是严重的错误”。阿尔特曼重申了他公开的立场,即OpenAI认同开源人工智能软件的重要性,并证实了科技刊物《The Information》关于OpenAI正在将其某一款模型开源的报道。博客称,阿尔特曼表示,公司可能将其GPT-3模型开源,但到目前为止之所以没有这样做,是因为阿尔特曼“怀疑有多少个人和公司有能力托管和服务”大语言模型。

据称阿尔特曼在闭门会议上表示,OpenAI仍在分析OpenAI Plus的用户希望如何使用这款插件。该插件支持大语言模型使用其他软件。哈毕比在博客中表示,这可能意味着这款插件尚未达到产品与市场契合的程度,因此在短期内不会通过OpenAI的API向企业客户发布。

哈毕比和OpenAI并未立即回复《财富》杂志的置评请求。

哈毕比的博客在社交媒体和开发者论坛上引起了激烈讨论。许多人表示,阿尔特曼的言论证明了GPU荒问题对于释放大语言模型的商业潜力的重要性。也有人表示,这证明了来自开源人工智能社区的许多创新对于人工智能未来的重要性。开源社区开发的创新途径,可以使用更少算力和更少数据,实现与规模最大的专有人工智能模型类似的性能。

Signal基金会(Signal Foundation)的总裁、大型科技公司的主要批评者梅雷迪思·惠特克在柏林召开的一次会议上接受场边采访时表示,这篇博客表明,全球最大的科技公司扼制了当前人工智能软件的基础,因为只有这些大公司有实力提供训练最大规模的人工智能模型所需要的计算资源和数据。她说到:“看得出来,尽管OpenAI能够使用微软(Microsoft)的基础设施,但对其约束最大的因素是GPU。”她提到的是OpenAI与微软的合作。到目前为止,微软在来自旧金山的人工智能初创公司OpenAI投资了130亿美元。 “你必须有超级昂贵的基础设施才能这样做。”她表示,人们不要误以为开源人工智能社区存在,就代表“行业格局是真正民主化和竞争性的”。 (财富中文网)

《财富》驻柏林记者大卫·迈尔为本文做出了贡献。

翻译:刘进龙

审校:汪皓

OpenAI的人工智能软件必须使用专用计算机芯片,而芯片荒阻碍了该公司的业务,并且除了ChatGPT以外,该公司并不打算发布面向消费者的产品。据报道,OpenAI联合创始人兼首席执行官山姆·阿尔特曼两周前在伦敦与软件开发者和初创公司CEO们召开了一次非公开会议。一位与会者的博客爆料称,阿尔特曼在会上披露了许多信息,以上的信息只是其中的两条。据称此次会议约有20人参会。最初发表这篇博客的页面显示,应OpenAI的要求,爆料此次闭门会议的账号已经关闭,但这并没有阻止人工智能界深入分析这位有影响力的CEO的(所谓的)言论。

一个互联网存档网站已经保存了一份原博客的副本,之后文章内容在社交媒体和程序员聚集的多个论坛上广泛传播。人工智能专家拉扎·哈毕比在博客中写道,阿尔特曼表示,OpenAI无法买到足够多运行人工智能应用需要使用的专用计算机芯片图形处理单元(GPU),这阻碍了公司的短期计划,也为使用OpenAI服务的开发者带来了麻烦。哈毕比是Humanloop公司的联合创始人兼CEO。哈毕比的初创公司位于伦敦,该公司率先提出了提高大语言模型训练效率的方法。大语言模型是OpenAI ChatGPT使用的基础技术。

GPU荒导致OpenAI更难支持用户通过大语言模型推送更多数据,并延缓了公司发布更多功能和服务的计划。该公司的ChatGPT等产品均以大语言模型作为核心。此外,博客中表示,芯片荒还降低了OpenAI现有服务的速度和可靠性,这会令客户不满,使他们不愿意基于OpenAI的技术开发企业应用。OpenAI在生成式人工智能繁荣中的先行者优势,也会因为芯片供应紧张而面临威胁,因为谷歌(Google)和其他知名度较低的竞争对手都有能力推出竞争性服务,而且开源竞争对手已经进一步站稳脚跟。

关于“语境窗口”

阿尔特曼列举了OpenAI因为硬件(如芯片)短缺无法开展的多项业务。哈毕比在博客中写道,其中包括向其GPT大语言模型的大多数客户提供更长的“语境窗口”。语境窗口决定了在模型中输入一条提示词可以调用的数据数量,以及模型的响应时间。大多数GPT-4用户的语境窗口支持的标记数量为8,000个(一个标记是人工智能模型进行预测所依据的一段数据,相当于约一个半英文单词)。OpenAI在3月宣布为其模型的精选客户提供支持32,000个标记的语境窗口,但很少有用户能够使用该功能,哈毕比的博客称,阿尔特曼将此归咎于GPU短缺。

全球大多数人工智能应用在GPU上训练和运行。GPU作为一种计算机芯片,通过高速并行处理进行数据分析。大多数GPU芯片来自一家公司,那就是英伟达(Nvidia),而且售价可能高达数千甚至数十万美元。市场观察家已经发现,由于英伟达与生成式人工智能繁荣的关联,其股价暴涨,而且其市值最近突破了1万亿美元。

哈毕比在博客中爆料,OpenAI联合创始人兼CEO还向开发者保证,除了ChatGPT以外,OpenAI没有计划发布任何面向消费者的产品。哈毕比称,许多参会的开发者告诉阿尔特曼,他们对于使用OpenAI的人工智能模型进行开发感到担心,因为无法确定OpenAI是否会发布竞争性产品。阿尔特曼表示,ChatGPT将是其唯一一款面向消费者的产品,而且公司的未来愿景是成为一款“超级智能的工作助手”,但OpenAI“不会涉足”许多需要使用GPT大语言模型的行业特定应用。

阿尔特曼还表示,他一个月前所说的“超大规模模型的时代”将要结束的观点被错误解读。他对开发者表示,他想要表达的意思是,OpenAI最强大的大语言模型GPT-4的规模已经足够庞大,因此公司不可能继续快速扩大人工智能系统的规模。他在伦敦会议上表示,OpenAI会继续创建更大的模型,但它们的规模只会有GPT-4的两倍或三倍,而不是扩大数百万倍。

爆料称,阿尔特曼在与开发者的对话中,还分享了OpenAI的近期发展规划。哈毕比的博客称,阿尔特曼表示,在2023年,OpenAI的目标是提高GPT-4的运行速度和降低其成本,提供更长的“语境窗口”以支持用户向OpenAI的GPT模型中输入更多数据并获得更长的输出结果,推出更方便客户根据具体使用案例调整GPT-4的方法,并支持ChatGPT及其大语言模型能够保留历史对话记忆,从而使用户想要继续未完成的对话或重复与模型的互动时,不需要每次都要重复按照相同的顺序输入提示。

阿尔特曼表示,公司明年的工作重点是发布GPT-4根据输入的图片输出结果的能力。OpenAI在3月发布该模型时演示了这项功能,但尚未向大多数客户开放。

哈毕比写道,在监管方面,阿尔特曼对开发者表示,他并不认为现有模型带来了任何严重的风险,而且“对现有模型进行监管或者禁用将是严重的错误”。阿尔特曼重申了他公开的立场,即OpenAI认同开源人工智能软件的重要性,并证实了科技刊物《The Information》关于OpenAI正在将其某一款模型开源的报道。博客称,阿尔特曼表示,公司可能将其GPT-3模型开源,但到目前为止之所以没有这样做,是因为阿尔特曼“怀疑有多少个人和公司有能力托管和服务”大语言模型。

据称阿尔特曼在闭门会议上表示,OpenAI仍在分析OpenAI Plus的用户希望如何使用这款插件。该插件支持大语言模型使用其他软件。哈毕比在博客中表示,这可能意味着这款插件尚未达到产品与市场契合的程度,因此在短期内不会通过OpenAI的API向企业客户发布。

哈毕比和OpenAI并未立即回复《财富》杂志的置评请求。

哈毕比的博客在社交媒体和开发者论坛上引起了激烈讨论。许多人表示,阿尔特曼的言论证明了GPU荒问题对于释放大语言模型的商业潜力的重要性。也有人表示,这证明了来自开源人工智能社区的许多创新对于人工智能未来的重要性。开源社区开发的创新途径,可以使用更少算力和更少数据,实现与规模最大的专有人工智能模型类似的性能。

Signal基金会(Signal Foundation)的总裁、大型科技公司的主要批评者梅雷迪思·惠特克在柏林召开的一次会议上接受场边采访时表示,这篇博客表明,全球最大的科技公司扼制了当前人工智能软件的基础,因为只有这些大公司有实力提供训练最大规模的人工智能模型所需要的计算资源和数据。她说到:“看得出来,尽管OpenAI能够使用微软(Microsoft)的基础设施,但对其约束最大的因素是GPU。”她提到的是OpenAI与微软的合作。到目前为止,微软在来自旧金山的人工智能初创公司OpenAI投资了130亿美元。 “你必须有超级昂贵的基础设施才能这样做。”她表示,人们不要误以为开源人工智能社区存在,就代表“行业格局是真正民主化和竞争性的”。 (财富中文网)

《财富》驻柏林记者大卫·迈尔为本文做出了贡献。

翻译:刘进龙

审校:汪皓

Shortages of the specialized computer chips needed to run its artificial intelligence software are holding back OpenAI’s business, and the company has no intention of releasing a consumer-facing product beyond ChatGPT. Those are just two of the disclosures OpenAI cofounder and CEO Sam Altman reportedly made to a group of software developers and startup CEOs at a private meeting in London two weeks ago, according to a blog post written by one of the participants. The account of the closed-door meeting, reportedly attended by about 20 people, was later taken down at OpenAI’s request, according to a note appended to the page where it initially appeared, but that hasn’t stopped the A.I. community from poring over the influential CEO’s (alleged) comments.

An internet archiving site had already saved a copy of the original blog post, and it has since circulated on social media and several coder-oriented discussion boards. Altman said OpenAI’s inability to access enough graphics processing units (GPUs), the specialized computer chips used to run A.I. applications, is delaying OpenAI’s short-term plans and causing problems for developers using OpenAI’s services, according to the blog post penned by Raza Habib, an A.I. expert who is also the cofounder and CEO of Humanloop. Habib’s London-based startup has pioneered methods to make the training of large language models, such as those that underpin OpenAI’s ChatGPT, more efficient.

The shortage of GPUs has made it harder for OpenAI to let users push more data through the large language models that underpin its software, such as ChatGPT, and slowed the company’s planned rollout of additional features and services. It has also made OpenAI’s existing services slower and less reliable, according to the blog post, a fact that is frustrating customers and making them reluctant to build enterprise applications on top of OpenAI’s technology. The chip supply crunch has risked OpenAI’s first-mover advantage in the generative A.I. boom, as Google—as well as lesser-known rivals—has been able to roll out competing services, and open-source competitors have gained a greater foothold.

All about the ‘context window’

Altman laid out several things that OpenAI just can’t do yet because it lacks the hardware (i.e., the chips). These include providing a longer “context window” to most customers of its GPT large language models, Habib wrote in his blog post. The context window determines how much data can be used in a single prompt that is fed into the model and how long the model’s response can be. Most users of GPT-4 have a context window that is 8,000 tokens long (a token is a segment of data on which the underlying A.I. model makes a prediction, equivalent to about one and a half words of English). OpenAI announced a 32,000-token window for select users of the model in March, but few users have been granted access to that feature, a fact Altman blamed on the lack of GPUs, Habib wrote.

The majority of the world’s A.I. applications are trained and run on GPUs, a kind of computer chip that is designed to crunch data using parallel processing at high speeds. Most of those chips are made by just one company, Nvidia, and can cost thousands to hundreds of thousands of dollars. Market watchers already know that Nvidia’s stock has soared due to its association with the boom in generative A.I., and its market valuation recently crossed the $1 trillion threshold.

The OpenAI cofounder and CEO also reportedly assured the developers that OpenAI has no plans to launch any consumer-facing products beyond ChatGPT, according to Habib’s post. Habib had said that many developers at the meeting told Altman they were concerned about using OpenAI’s A.I. models to build upon if OpenAI itself might later roll out competing products. Altman reportedly said ChatGPT would be its only consumer-facing product and that his vision for its future was as a “super smart assistant for work” but that many industry-specific cases involving the underlying GPT large language models OpenAI “wouldn’t touch.”

Altman also reportedly said that comments he had a month ago about “the era of giant models” being over had been wrongly interpreted. The OpenAI chief told developers that he only meant to say that given how large GPT-4, OpenAI’s most powerful large language model, already is, it would not be possible to continue to scale up A.I. systems exponentially. He told the London meeting that OpenAI would continue to create larger models, but they would be only two or three times bigger than GPT-4, not millions of times larger.

In the conversation with developers, Altman also reportedly laid out OpenAI’s near-term road map. Within 2023, Altman said OpenAI’s goals were to make GPT-4 faster and cheaper, provide a longer “context window” to allow people to feed OpenAI’s GPT models more data and receive longer outputs, roll out an easier way to fine-tune GPT-4 for specific customer use cases, and also allow ChatGPT and its underlying large language models to retain a memory of past dialogues, so that one would not have to repeat the same sequence of prompts each time a person wanted to pick up a conversation where they left off or repeat a certain interaction with the model, Habib’s blog post said.

Next year, Altman reportedly said the priority would be to roll out GPT-4’s ability to receive images as inputs and outputs, a feature the company demonstrated when it debuted the model in March, but has not made available to most customers yet.

When it comes to regulation, Altman said to the developers that he did not think existing models posed any outsize risk and that “it would be a big mistake to regulate or ban them,” Habib wrote. Altman reiterated his public stance that OpenAI believed in the importance of open-source A.I. software and confirmed a report from the tech publication The Information that OpenAI is considering open-sourcing one of its models. According to the blog, Altman said the company might open-source its GPT-3 model and only hadn’t done so yet because Altman “was skeptical of how many individuals and companies would have the capability to host and serve” large language models.

Altman reportedly told the closed-door meeting that the company was still trying to figure out how ChatGPT Plus customers wanted to use the plugins that allow the large language model to use other software. Habib said in the blog that this probably meant that the plugins did not yet have product-market fit and would not be rolled out to enterprise customers through OpenAI’s API anytime soon.

Neither Habib nor OpenAI immediately responded to requests for comment from Fortune.

Habib’s blog post inspired heated discussion on social media and developer forums. Many said Altman’s comments showed just how much of a problem the lack of GPUs is for realizing the business potential of large language models. Other said it showed just how vital many of the innovations emanating from the open-source A.I. community—which has developed innovative ways to achieve similar performance to some of the largest proprietary A.I. models using much less computing power and much less data—are to the technology’s future.

Meredith Whittaker, the president of the Signal Foundation and a leading critic of Big Tech, interviewed on the sidelines of a conference in Berlin, said the blog post showed the stranglehold that the world’s largest technology companies hold over the foundations of today’s A.I. software because only these companies can afford the computing resources and data needed to train the largest A.I. models. “What you see is that the primary constraint, even with access to Microsoft’s infrastructure, is GPUs,” she said, referring to OpenAI’s close partnership with Microsoft, which has invested $13 billion into the San Francisco A.I. startup to date. “You need incredibly expensive infrastructure to be able to do this.” She said people should not confuse the fact that an open-source A.I. community exists “with an actually democratic and competitive landscape.”

Fortune reporter David Meyer in Berlin contributed reporting to this story.

财富中文网所刊载内容之知识产权为财富媒体知识产权有限公司及/或相关权利人专属所有或持有。未经许可,禁止进行转载、摘编、复制及建立镜像等任何使用。
0条Plus
精彩评论
评论

撰写或查看更多评论

请打开财富Plus APP

前往打开