人们可能预测人工智能会模仿各种形式的人类智能,但很少有人会将创造力放在第一位。创造力是神奇的,而且令人沮丧的是,创意总是转瞬即逝。创造力是我们之所以成为人的关键,而且它似乎是机器背后冰冷的逻辑难以理解的。
但现在越来越多人使用人工智能开展创意工作。
如DALL-E和Midjourney等新人工智能工具越来越成为创意制作过程的一部分,有些工具甚至凭借他们的创意作品获奖。人工智能工具产生了日益严重的社会和经济影响,例如,人工智能生成新创意内容的潜力,是好莱坞编剧罢工的导火索。
如果说我们最近对人工智能引发罢工的原因所做的研究能带来任何启示,那就是基于人工智能的创意可能刚刚开始出现,包括证明其前景和危害的例子。
新颖性与实用性的融合
当人们创造力最旺盛的时候,他们会创造出以前并不存在的新产品或新解决方案,回应需求、目标或问题。
从这种意义上来说,创造力就是以有用的或令人满意的新颖方式,组合现有的创意、材料、知识等资源。创造性思维的结果经常还会给人们带来惊喜,带来一些创造者没有甚至不可能预测到的成果。
它可能是一项发明,一段出人意料的笑料,或者一种突破性的物理学理论。它也可能是一种独特的音符、节拍、声音和歌词排列,最终形成一首全新的歌曲。
因此,作为创造性思维方面的研究人员,我从GPT-4等最新版人工智能生成的内容中发现了一些有趣的现象。
GPT-4在执行需要创造性思维的任务时展现出来的新颖性和有用性,让我回想起我作为老师和创业者,从学生和同事们那里收到的各种创意。
这些创意五花八门,出人意料,而且紧扣主题,具有实际意义。根据要求,有些创意甚至充满了想象力。
例如,向GPT-4输入下列提示:“假设所有儿童每周有一天会变成巨人。会发生什么?” GPT-4生成的创意涉及文化、经济、心理学、政治、人际交往、交通、休闲等许多方面,它生成的许多新颖的联系令人意想不到,也是前所未见的。
这种新颖性和实用性的结合很难实现,大多数科学家、艺术家、作家、音乐家、诗人、厨师、创始人、工程师和学者都可以证明这一点。
但人工智能似乎就能做到,而且表现出色。
检验人工智能的创造力
我决定与创造力和创业领域的研究人员克里斯蒂安·拜尔奇和克里斯蒂安·吉尔德合作,让人工智能参加托伦斯创造性思维考试(Torrance Tests of Creative Thinking,TTCT),检验它的创造力。
托伦斯创造性思维考试要求考试者进行现实生活任务所需要的创意活动,例如提问题、如何做到更随机应变或更高效、猜测原因和效果或者完善一款产品等。考试者可能被要求建议改进一款儿童玩具的方法,或者如上文的例子所示,想象一种假设情景的后果。
考试的目的并不是衡量历史创造力,这是一些研究人员用于形容莫扎特和爱因斯坦等人的变革性才能所使用的术语。它评估的是个人的一般创造力,通常被称为心理或个人创造力。
我们除了在GPT-4中运行了八次TTCT考试以外,还让24位本科生参加了考试。
所有考试结果由私人考试公司Scholastic Testing Service经过培训的评审进行评价。该公司负责TTCT考试的评分。评审事先并不知道他们要评价的部分考试由人工智能完成。
Scholastic Testing Service是一家私人公司,因此它不对外公开考题。这可以保证GPT-4无法从互联网上搜索历史考题和回答。此外,该公司有由大学生和成年人完成的数以千计的考试数据库,这为我们额外提供了一个庞大的对照组,可以与人工智能的分数进行对比。
结果如何?
GPT-4在创意独特性方面的得分排在所有考试者的前1%。根据我们的研究,我们认为这是证明人工智能的原创性思维达到甚至超过人类的早期例证之一。
简而言之,我们认为,GPT-4等人工智能模型能够产生在人类眼中出人意料的、新颖的和独特的创意。有其他研究人员对人工智能和创造力的研究得出了类似结论。
创造力确实可以评价
人工智能展现出的创造力之所以令人感到意外,有许多原因。
例如,许多研究领域以外的人士依旧相信,创造力无法定义,更无法评分。但数千年来,人类的新颖性和独创性的产物,总是会被标上价格买卖。至少从上世纪50年代开始,心理学等领域就已经对创造性工作进行定义和评分。
研究人员梅尔·罗得斯在1961年推出的创造力的个体、产物、过程、压缩模型,尝试对当时人们理解和评价创造力的无数种方式进行分类。之后,人们对创造力的了解日益深入。
还有人对于将“创造力”这个词用于计算机等非人类实体感到意外。在这方面,我们认同认知科学家玛格丽特·博登的观点。她认为,创造性这个术语是否适用于人工智能,这是一个哲学问题,而不是科学问题。
人工智能的奠基人预测到它的创造力
值得注意的是,我们的研究仅分析了人工智能生成的创意结果。我们没有研究它的创意过程,这个过程可能与人类的思维过程截然不同。我们也没有分析它生成创意的环境。如果我们将创造力定义为只有人类才具备的能力,那么顾名思义,我们只能认为人工智能不具有创造力。
尽管关于创造力的定义和创意过程存在争议,但最新版人工智能生成的成果确实是新颖的和有用的。我们认为,这符合心理学界和科学界对创造力的主流定义。
此外,当前人工智能所具备的创造力并未完全在意料之外。
1956年达特茅斯夏季人工智能研究项目(1956 Dartmouth Summer Research Project on Artificial Intelligence)的建议书现在已经举世闻名。当时,人工智能的奠基人们强调,他们希望模拟“学习的每个方面,或者任何智能的特性”,包括创造力。
在这份建议书中,计算机科学家内森·罗切斯特披露他参与研究的动机是:“我如何建造一台机器,能够在解决问题的时候展现出独创性?”
显然,人工智能的奠基人们相信,创造力,包括创意的独创性,是机器可以模拟的人类智能特定形式。
在我看来,GPT-4和其他人工智能模型在创造力方面出人意料的得分,凸显出一个更紧迫的问题:到目前为止,美国学校很少开设专门针对人类创造力和培养创造力的官方项目和课程。
从这方面而言,人工智能现在展现出来的创造力,为教育工作者和其他有志于进一步提高人类创造力的人们,包括将创造力视为个人成长、社会发展和经济增长的必要条件的人们,提供了一个行动起来改变现状的“斯普特尼克时刻”。(财富中文网)
本文作者埃里克·古济克为蒙大拿大学(University of Montana)管理学助理临床教授。
本文依据知识共享许可协议转载自The Conversation。阅读原文。
翻译:刘进龙
审校:汪皓
人们可能预测人工智能会模仿各种形式的人类智能,但很少有人会将创造力放在第一位。创造力是神奇的,而且令人沮丧的是,创意总是转瞬即逝。创造力是我们之所以成为人的关键,而且它似乎是机器背后冰冷的逻辑难以理解的。
但现在越来越多人使用人工智能开展创意工作。
如DALL-E和Midjourney等新人工智能工具越来越成为创意制作过程的一部分,有些工具甚至凭借他们的创意作品获奖。人工智能工具产生了日益严重的社会和经济影响,例如,人工智能生成新创意内容的潜力,是好莱坞编剧罢工的导火索。
如果说我们最近对人工智能引发罢工的原因所做的研究能带来任何启示,那就是基于人工智能的创意可能刚刚开始出现,包括证明其前景和危害的例子。
新颖性与实用性的融合
当人们创造力最旺盛的时候,他们会创造出以前并不存在的新产品或新解决方案,回应需求、目标或问题。
从这种意义上来说,创造力就是以有用的或令人满意的新颖方式,组合现有的创意、材料、知识等资源。创造性思维的结果经常还会给人们带来惊喜,带来一些创造者没有甚至不可能预测到的成果。
它可能是一项发明,一段出人意料的笑料,或者一种突破性的物理学理论。它也可能是一种独特的音符、节拍、声音和歌词排列,最终形成一首全新的歌曲。
因此,作为创造性思维方面的研究人员,我从GPT-4等最新版人工智能生成的内容中发现了一些有趣的现象。
GPT-4在执行需要创造性思维的任务时展现出来的新颖性和有用性,让我回想起我作为老师和创业者,从学生和同事们那里收到的各种创意。
这些创意五花八门,出人意料,而且紧扣主题,具有实际意义。根据要求,有些创意甚至充满了想象力。
例如,向GPT-4输入下列提示:“假设所有儿童每周有一天会变成巨人。会发生什么?” GPT-4生成的创意涉及文化、经济、心理学、政治、人际交往、交通、休闲等许多方面,它生成的许多新颖的联系令人意想不到,也是前所未见的。
这种新颖性和实用性的结合很难实现,大多数科学家、艺术家、作家、音乐家、诗人、厨师、创始人、工程师和学者都可以证明这一点。
但人工智能似乎就能做到,而且表现出色。
检验人工智能的创造力
我决定与创造力和创业领域的研究人员克里斯蒂安·拜尔奇和克里斯蒂安·吉尔德合作,让人工智能参加托伦斯创造性思维考试(Torrance Tests of Creative Thinking,TTCT),检验它的创造力。
托伦斯创造性思维考试要求考试者进行现实生活任务所需要的创意活动,例如提问题、如何做到更随机应变或更高效、猜测原因和效果或者完善一款产品等。考试者可能被要求建议改进一款儿童玩具的方法,或者如上文的例子所示,想象一种假设情景的后果。
考试的目的并不是衡量历史创造力,这是一些研究人员用于形容莫扎特和爱因斯坦等人的变革性才能所使用的术语。它评估的是个人的一般创造力,通常被称为心理或个人创造力。
我们除了在GPT-4中运行了八次TTCT考试以外,还让24位本科生参加了考试。
所有考试结果由私人考试公司Scholastic Testing Service经过培训的评审进行评价。该公司负责TTCT考试的评分。评审事先并不知道他们要评价的部分考试由人工智能完成。
Scholastic Testing Service是一家私人公司,因此它不对外公开考题。这可以保证GPT-4无法从互联网上搜索历史考题和回答。此外,该公司有由大学生和成年人完成的数以千计的考试数据库,这为我们额外提供了一个庞大的对照组,可以与人工智能的分数进行对比。
结果如何?
GPT-4在创意独特性方面的得分排在所有考试者的前1%。根据我们的研究,我们认为这是证明人工智能的原创性思维达到甚至超过人类的早期例证之一。
简而言之,我们认为,GPT-4等人工智能模型能够产生在人类眼中出人意料的、新颖的和独特的创意。有其他研究人员对人工智能和创造力的研究得出了类似结论。
创造力确实可以评价
人工智能展现出的创造力之所以令人感到意外,有许多原因。
例如,许多研究领域以外的人士依旧相信,创造力无法定义,更无法评分。但数千年来,人类的新颖性和独创性的产物,总是会被标上价格买卖。至少从上世纪50年代开始,心理学等领域就已经对创造性工作进行定义和评分。
研究人员梅尔·罗得斯在1961年推出的创造力的个体、产物、过程、压缩模型,尝试对当时人们理解和评价创造力的无数种方式进行分类。之后,人们对创造力的了解日益深入。
还有人对于将“创造力”这个词用于计算机等非人类实体感到意外。在这方面,我们认同认知科学家玛格丽特·博登的观点。她认为,创造性这个术语是否适用于人工智能,这是一个哲学问题,而不是科学问题。
人工智能的奠基人预测到它的创造力
值得注意的是,我们的研究仅分析了人工智能生成的创意结果。我们没有研究它的创意过程,这个过程可能与人类的思维过程截然不同。我们也没有分析它生成创意的环境。如果我们将创造力定义为只有人类才具备的能力,那么顾名思义,我们只能认为人工智能不具有创造力。
尽管关于创造力的定义和创意过程存在争议,但最新版人工智能生成的成果确实是新颖的和有用的。我们认为,这符合心理学界和科学界对创造力的主流定义。
此外,当前人工智能所具备的创造力并未完全在意料之外。
1956年达特茅斯夏季人工智能研究项目(1956 Dartmouth Summer Research Project on Artificial Intelligence)的建议书现在已经举世闻名。当时,人工智能的奠基人们强调,他们希望模拟“学习的每个方面,或者任何智能的特性”,包括创造力。
在这份建议书中,计算机科学家内森·罗切斯特披露他参与研究的动机是:“我如何建造一台机器,能够在解决问题的时候展现出独创性?”
显然,人工智能的奠基人们相信,创造力,包括创意的独创性,是机器可以模拟的人类智能特定形式。
在我看来,GPT-4和其他人工智能模型在创造力方面出人意料的得分,凸显出一个更紧迫的问题:到目前为止,美国学校很少开设专门针对人类创造力和培养创造力的官方项目和课程。
从这方面而言,人工智能现在展现出来的创造力,为教育工作者和其他有志于进一步提高人类创造力的人们,包括将创造力视为个人成长、社会发展和经济增长的必要条件的人们,提供了一个行动起来改变现状的“斯普特尼克时刻”。(财富中文网)
本文作者埃里克·古济克为蒙大拿大学(University of Montana)管理学助理临床教授。
本文依据知识共享许可协议转载自The Conversation。阅读原文。
翻译:刘进龙
审校:汪皓
Of all the forms of human intellect that one might expect artificial intelligence to emulate, few people would likely place creativity at the top of their list. Creativity is wonderfully mysterious—and frustratingly fleeting. It defines us as human beings—and seemingly defies the cold logic that lies behind the silicon curtain of machines.
Yet, the use of AI for creative endeavors is now growing.
New AI tools like DALL-E and Midjourney are increasingly part of creative production, and some have started to win awards for their creative output. The growing impact is both social and economic – as just one example, the potential of AI to generate new, creative content is a defining flashpoint behind the Hollywood writers strike.
And if our recent study into the striking originality of AI is any indication, the emergence of AI-based creativity—along with examples of both its promise and peril—is likely just beginning.
A blend of novelty and utiliy
When people are at their most creative, they’re responding to a need, goal or problem by generating something new – a product or solution that didn’t previously exist.
In this sense, creativity is an act of combining existing resources—ideas, materials, knowledge—in a novel way that’s useful or gratifying. Quite often, the result of creative thinking is also surprising, leading to something that the creator did not—and perhaps could not—foresee.
It might involve an invention, an unexpected punchline to a joke or a groundbreaking theory in physics. It might be a unique arrangement of notes, tempo, sounds and lyrics that results in a new song.
So, as a researcher of creative thinking, I immediately noticed something interesting about the content generated by the latest versions of AI, including GPT-4.
When prompted with tasks requiring creative thinking, the novelty and usefulness of GPT-4’s output reminded me of the creative types of ideas submitted by students and colleagues I had worked with as a teacher and entrepreneur.
The ideas were different and surprising, yet relevant and useful. And, when required, quite imaginative.
Consider the following prompt offered to GPT-4: “Suppose all children became giants for one day out of the week. What would happen?” The ideas generated by GPT-4 touched on culture, economics, psychology, politics, interpersonal communication, transportation, recreation and much more – many surprising and unique in terms of the novel connections generated.
This combination of novelty and utility is difficult to pull off, as most scientists, artists, writers, musicians, poets, chefs, founders, engineers and academics can attest.
Yet AI seemed to be doing it – and doing it well.
Putting AI to the test
With researchers in creativity and entrepreneurship Christian Byrge and Christian Gilde, I decided to put AI’s creative abilities to the test by having it take the Torrance Tests of Creative Thinking, or TTCT.
The TTCT prompts the test-taker to engage in the kinds of creativity required for real-life tasks: asking questions, how to be more resourceful or efficient, guessing cause and effect or improving a product. It might ask a test-taker to suggest ways to improve a children’s toy or imagine the consequences of a hypothetical situation, as the above example demonstrates.
The tests are not designed to measure historical creativity, which is what some researchers use to describe the transformative brilliance of figures like Mozart and Einstein. Rather, it assesses the general creative abilities of individuals, often referred to as psychological or personal creativity.
In addition to running the TTCT through GPT-4 eight times, we also administered the test to 24 of our undergraduate students.
All of the results were evaluated by trained reviewers at Scholastic Testing Service, a private testing company that provides scoring for the TTCT. They didn’t know in advance that some of the tests they’d be scoring had been completed by AI.
Since Scholastic Testing Service is a private company, it does not share its prompts with the public. This ensured that GPT-4 would not have been able to scrape the internet for past prompts and their responses. In addition, the company has a database of thousands of tests completed by college students and adults, providing a large, additional control group with which to compare AI scores.
Our results?
GPT-4 scored in the top 1% of test-takers for the originality of its ideas. From our research, we believe this marks one of the first examples of AI meeting or exceeding the human ability for original thinking.
In short, we believe that AI models like GPT-4 are capable of producing ideas that people see as unexpected, novel and unique. Other researchers are arriving at similar conclusions in their research of AI and creativity.
Yes, creativity can be evaluated
The emerging creative ability of AI is surprising for a number of reasons.
For one, many outside of the research community continue to believe that creativity cannot be defined, let alone scored. Yet products of human novelty and ingenuity have been prized – and bought and sold – for thousands of years. And creative work has been defined and scored in fields like psychology since at least the 1950s.
The person, product, process, press model of creativity, which researcher Mel Rhodes introduced in 1961, was an attempt to categorize the myriad ways in which creativity had been understood and evaluated until that point. Since then, the understanding of creativity has only grown.
Still others are surprised that the term “creativity” might be applied to nonhuman entities like computers. On this point, we tend to agree with cognitive scientist Margaret Boden, who has argued that the question of whether the term creativity should be applied to AI is a philosophical rather than scientific question.
AI’s founders foresaw its creative abilities
It’s worth noting that we studied only the output of AI in our research. We didn’t study its creative process, which is likely very different from human thinking processes, or the environment in which the ideas were generated. And had we defined creativity as requiring a human person, then we would have had to conclude, by definition, that AI cannot possibly be creative.
But regardless of the debate over definitions of creativity and the creative process, the products generated by the latest versions of AI are novel and useful. We believe this satisfies the definition of creativity that is now dominant in the fields of psychology and science.
Furthermore, the creative abilities of AI’s current iterations are not entirely unexpected.
In their now famous proposal for the 1956 Dartmouth Summer Research Project on Artificial Intelligence, the founders of AI highlighted their desire to simulate “every aspect of learning or any other feature of intelligence” – including creativity.
In this same proposal, computer scientist Nathaniel Rochester revealed his motivation: “How can I make a machine which will exhibit originality in its solution of problems?”
Apparently, AI’s founders believed that creativity, including the originality of ideas, was among the specific forms of human intelligence that machines could emulate.
To me, the surprising creativity scores of GPT-4 and other AI models highlight a more pressing concern: Within U.S. schools, very few official programs and curricula have been implemented to date that specifically target human creativity and cultivate its development.
In this sense, the creative abilities now realized by AI may provide a “Sputnik moment” for educators and others interested in furthering human creative abilities, including those who see creativity as an essential condition of individual, social and economic growth.
Erik Guzik, Assistant Clinical Professor of Management, University of Montana
This article is republished from The Conversation under a Creative Commons license. Read the original article.