取一段胶带贴在铅笔芯上,撕下胶带,上面或许还粘着一层薄薄的石墨片。对折胶带,再撕开,把粘着的石墨薄片分离开来。重复10到20次。如果你的技术够好,那么恭喜你,你得到了目前世上最薄、几乎也是最坚硬的材料。
用胶带粘出石墨烯确有其事:2004年,来自英国曼彻斯特大学(University of Manchester)的安德烈·海姆和康斯坦丁·诺沃肖洛夫首次成功分离出了只有一个原子厚度的二维碳材料:石墨烯。这两位物理学家也因此而获得了2010年的诺贝尔物理学奖。
石墨烯具有许多得天独厚的性质,正如那些加入石墨烯材料的新兴产品所宣称的那样:耳机的音质更棒、智能手机的散热性能更好、路面的强度更高,洗发水的包装也变得更加环保。
石墨烯不仅是世界上最薄、强韧度第二(一维碳材料carbyne强度比石墨烯更高)的材料,而且轻若无物、几乎完全透明。经过不同的处理方式,无论是弹性还是抗断裂能力方面,石墨烯均表现优异。除此之外,石墨烯还是数一数二的导电导热材料,在处理液体时能够形成可调型过滤器甚至是完全阻隔的屏障。而且,正如海姆和诺沃肖洛夫示范的那样,石墨烯的制备工艺非常简单。
石墨烯材料的优异性能,再加上诺贝尔奖得主的精彩故事加持,十多年前关于石墨烯的宣传可谓是铺天盖地。但需要做的工作还有很多,比如找出石墨烯的最佳制备方法、石墨烯的商业化应用、逐步构建新市场等等。于是,石墨烯概念炒作慢慢归于沉寂。
然而,现在我们似乎真的要迎来属于石墨烯的时代。
石墨烯“发声”
加拿大初创公司Ora研发出了首款石墨烯耳机GQ。洛杉矶爱乐乐团(Los Angeles Philharmonic)的音乐总监古斯塔夫·杜达梅尔发表声明公开支持这款耳机,他热情洋溢地说:“耳机里传来的音乐音质如同站在交响乐团指挥台上听到的那般丝丝入扣。”
石墨烯强度高、质量轻,阻尼性能优越:只要切断通过石墨烯的电流,石墨烯就会随即停止振动。利用这些优点,Ora研发出了用于耳机和扬声器的石墨烯材质的振膜。就连诺沃肖洛夫本人也称赞该公司确保了“石墨烯正式走出实验室,进军音频领域。”
ORA的联合创始人阿里·平卡斯称:“近二十年来,从理论上来讲,石墨烯的性质决定了这是一款制作扬声器振膜‘圣杯’一样的材料。”他解释说,通常情况下,扬声器设计师必须在刚度、轻巧性或阻尼方面降低要求。
平卡斯称,公司将与知名笔记本电脑和智能手机品牌合作,为它们的设备制造体积更小、更响亮的扬声器,并于2022年推出部分设计。但因为签署了保密协议,他并未公开合作的品牌。
先进技术市场调研公司IDTechEx的首席分析师理查德·柯林斯表示:“横空出世的石墨烯是一种可以改变世界的神奇材料。老实说,如果你跟与石墨烯相关的人士交谈,大多数人仍然认为石墨烯会改变一切。”
“事实上,十年间也有很多公司在尝试应用石墨烯。许多终端用户在探索这种材料。从实际角度看,只有到现在和未来几年我们才慢慢接近石墨烯应用的转折点。”
石墨烯“上路”
从音频到沥青路面:石墨烯的高强度也激发了人们将之应用于建筑领域的兴趣。
建筑行业的碳排放问题由来已久;生产混凝土所排放的二氧化碳占全球二氧化碳排放量的8%。利用石墨烯强化混凝土,能够减少建筑中的混凝土用量,从而降低碳排放。
但事实证明,石墨烯的高导热率(华为近期推出的部分智能手机就应用了这一性能)同样可圈可点。
还记得几年前意大利热那亚发生的公路桥坍塌事故吗?重新铺设的沥青桥面中就含有意大利初创公司Directa Plus研制的石墨烯粉末。石墨烯成分的导热性可以有效降低路面温度,使沥青不易在低温环境下产生冷点从而导致硬化和开裂。
Directa Plus联合创始人及首席执行官朱利奥·塞萨里奥声称:“这种添加剂最出色的性能在于它能够使路面的平均使用寿命从目前的六七年提升至18至21年。”但Directa Plus公司研制的石墨烯微片的应用远不止于此。
除了塞萨里奥外,Directa Plus还有几位来自美国的联合创始人(后来将持有的股份卖给了医生起家的亿万富翁投资人黄馨祥)。他们都曾经是Union Carbide公司元老。1984年博帕尔事件(Union Carbide公司在印度博帕尔市的农药厂出现化学气体泄漏,50多万人因此而丧命)后不久,意大利人塞萨里奥加入了这家美国化工巨头(现为陶氏化学下属公司)。
这场悲剧的不幸后果促使塞萨里奥开始关注环境和可持续性,这一点也在Directa Plus的产品中得到了体现。
首先,不同于金属催化外延生长的化学制备方法,Directa Plus采用的是高温高压条件下从石墨颗粒中剥离石墨烯的物理方法。塞萨里奥表示,使用这种方法可以更方便地生产出适合贴身穿着的石墨烯面料服装和口罩(采用Directa Plus石墨烯材料的服装和口罩均已上市销售),成本也更低。
除此之外,Directa Plus还一直在与俄罗斯卢克石油公司和奥地利OMV公司合作,解决因为罗马尼亚原油泄漏而受到污染的土壤和水的净化问题。由于水能够通过石墨烯蒸发,而大多数其他液体不能,将Directa Plus的石墨烯粉末应用于围油栏可以吸附油污,清洁周围水质。吸附油污达到饱和状态后,能够作挤压处理再重复使用。
塞萨里奥在谈到使用石墨烯净化的初步成果时说:“我们清理了400吨原油,并送到炼油厂回收。”
更环保的石墨烯包装
考虑到环境效益,还可以将石墨烯用作柔性阻隔包装材料。
本月,英国一家名为Toraphene的初创公司推出了一款生物聚合物,该公司表示,这是首款可完全生物降解、可堆肥、可商业化生产的生物聚合物,能够替代塑料包装。将石墨烯与植物天然高分子聚合物复合在一起的Toraphene材料将首先作为购物袋材质投入应用。
2011年,挪威科技大学(Norwegian University of Science and Technology)的研究人员成立了Toraphene公司。但用作液体包装材料才是石墨烯包装材料的真正突破。
首席执行官高特·朱利乌森表示,四年前,消费品行业巨头联合利华(Unilever)曾经与Toraphene接洽,寻找更优质的小袋洗发水包装(联合利华方面证实两家公司曾经有过洽谈)。为了防止液体渗出,目前小袋洗发水采用的是多层塑料和一层氧化铝复合的铝塑包装袋形式。Toraphene方面表示,Toraphene材料具有液体包装所需的强度和防水性,但因为材料成分只含有机物和碳,所以更易于回收。
总之,两家公司的数轮洽谈最后以失败告终:朱利乌森表示,经过两年的合同谈判,卡夫亨氏(Kraft Heinz)的敌意收购促使联合利华不得不大幅削减成本以提高股息,研发遭受重创。随着Toraphene方面的洽谈联系人被解雇,双方未达成任何交易,为了将这种阻隔性包装推向市场,这家初创公司将目光投向了刚刚完成的一轮众筹(而且获得了大量超额认购)。
朱利乌森称:“我们制作阻隔性包装需要的这类石墨烯目前的散装价格约为每公斤200美元。”IDTechEx的柯林斯认为这个价格偏高,他表示,目前一些公司的石墨烯售价低于每公斤10美元。但Toraphene的石墨烯原料源自开采的石墨,若使用低成本合成的石墨烯,生产出来的包装材料质量达不到要求。
朱利乌森说:“因为我们用到的石墨烯量非常少(石墨烯在包装原材料中所占比例不到0.2%),所以我们生产的石墨烯包装具有很好的市场前景。加入石墨烯可能会增加10%左右的成本,但包装的牢固性提升了20%以上。我们可以造福社会。”
下一个应用领域:纸质咖啡杯。目前的纸质咖啡杯使用塑料衬里来防止渗漏,很难回收利用。Toraphene已经申请专利将Toraphene材料用作咖啡杯衬里,目前正在争取获得美国和欧洲的食品标准监管机构的批准。
柯林斯认为,石墨烯在这类领域才能够真正大获成功。(据IDTechEx估算,到2031年,各种石墨烯材料的市场价值将从目前的不到1亿美元上涨到7亿美元。)确实,因为使用了石墨烯材料,耳机、网球拍、鞋子等许多消费品都实现了增值销售,但他也表示:“只有销售了成千上百吨的材料才算是成功。”
柯林斯说:“以汽车公司为例,它们不会花钱购买耐磨衬垫,因为石墨烯会拉高营销成本。这就是现实。这种产品生命周期经济学有意义吗?而这就是那个转折点的主旨所在。”
高歌猛进
我们终于谈到了石墨烯领域当前最受关注的公司之一:Skeleton Technologies。
这家有着爱沙尼亚和德国背景的公司与欧洲几家汽车巨头签订了合同,为后者生产用于存储能量的石墨烯电池(暂时未公布合作品牌)。
把普通的石墨烯一层层堆叠起来会发生聚集并最终变回石墨。为了解决这一难题,Skeleton开发了一种专利方法来制造弯曲的石墨烯材料,并将这种材料用于超级电容器。
这款石墨烯增强型电池可以在数秒内充满电,一百万次充放电循环后都不会退化,并且不需要锂、钴等稀缺材料。目前,这些超级电容器已经在挖掘机、医疗设备和运输工具中得到应用:在德国曼海姆、海德堡和路德维希港等城市,超级电容器被用于回收有轨电车的制动能量,再将回收的能量用来加速。
Skeleton的首席执行官塔维·马迪伯克说:“在所有类型的电池解决方案中,超级电容器成本最低、体积最小。”然而,与传统的锂电池相比,这些超级电容器储存的能量更少,因此,石墨烯超级电容器很可能会与其他技术共存并相互补充。
马迪伯克称,弯曲的石墨烯最大的好处是能够处理导致标准锂电池过热和随着时间的推移而退化的峰值负载;两者相结合可以让电池组体积缩小30%,使用寿命延长一倍。他还谈到,随着相对不可预测的可再生能源影响力增强,Skeleton的超级电容器在维持电网稳定方面潜力巨大。
早在2009年石墨烯材料刚刚兴起之际,Skeleton就已经开始开发石墨烯技术,但直到几年前才开始将其超级电容器商业化。由于积压的合同已经超过1.5亿欧元(1.82亿美元),Skeleton在10月的一轮融资中筹集了4100万欧元来扩大规模,并为推出“超级电池”做准备:马迪伯克认为这是一个价值600亿欧元的潜在市场。
作电子商务出身的马迪伯克表示:“如果2009年的时候知道需要经历如此漫长的历程,或许我们未必就会创办这家公司。石墨烯的发展和走向市场都需要有足够的耐心。”(财富中文网)
译者:唐尘
取一段胶带贴在铅笔芯上,撕下胶带,上面或许还粘着一层薄薄的石墨片。对折胶带,再撕开,把粘着的石墨薄片分离开来。重复10到20次。如果你的技术够好,那么恭喜你,你得到了目前世上最薄、几乎也是最坚硬的材料。
用胶带粘出石墨烯确有其事:2004年,来自英国曼彻斯特大学(University of Manchester)的安德烈·海姆和康斯坦丁·诺沃肖洛夫首次成功分离出了只有一个原子厚度的二维碳材料:石墨烯。这两位物理学家也因此而获得了2010年的诺贝尔物理学奖。
石墨烯具有许多得天独厚的性质,正如那些加入石墨烯材料的新兴产品所宣称的那样:耳机的音质更棒、智能手机的散热性能更好、路面的强度更高,洗发水的包装也变得更加环保。
石墨烯不仅是世界上最薄、强韧度第二(一维碳材料carbyne强度比石墨烯更高)的材料,而且轻若无物、几乎完全透明。经过不同的处理方式,无论是弹性还是抗断裂能力方面,石墨烯均表现优异。除此之外,石墨烯还是数一数二的导电导热材料,在处理液体时能够形成可调型过滤器甚至是完全阻隔的屏障。而且,正如海姆和诺沃肖洛夫示范的那样,石墨烯的制备工艺非常简单。
石墨烯材料的优异性能,再加上诺贝尔奖得主的精彩故事加持,十多年前关于石墨烯的宣传可谓是铺天盖地。但需要做的工作还有很多,比如找出石墨烯的最佳制备方法、石墨烯的商业化应用、逐步构建新市场等等。于是,石墨烯概念炒作慢慢归于沉寂。
然而,现在我们似乎真的要迎来属于石墨烯的时代。
石墨烯“发声”
加拿大初创公司Ora研发出了首款石墨烯耳机GQ。洛杉矶爱乐乐团(Los Angeles Philharmonic)的音乐总监古斯塔夫·杜达梅尔发表声明公开支持这款耳机,他热情洋溢地说:“耳机里传来的音乐音质如同站在交响乐团指挥台上听到的那般丝丝入扣。”
石墨烯强度高、质量轻,阻尼性能优越:只要切断通过石墨烯的电流,石墨烯就会随即停止振动。利用这些优点,Ora研发出了用于耳机和扬声器的石墨烯材质的振膜。就连诺沃肖洛夫本人也称赞该公司确保了“石墨烯正式走出实验室,进军音频领域。”
ORA的联合创始人阿里·平卡斯称:“近二十年来,从理论上来讲,石墨烯的性质决定了这是一款制作扬声器振膜‘圣杯’一样的材料。”他解释说,通常情况下,扬声器设计师必须在刚度、轻巧性或阻尼方面降低要求。
平卡斯称,公司将与知名笔记本电脑和智能手机品牌合作,为它们的设备制造体积更小、更响亮的扬声器,并于2022年推出部分设计。但因为签署了保密协议,他并未公开合作的品牌。
先进技术市场调研公司IDTechEx的首席分析师理查德·柯林斯表示:“横空出世的石墨烯是一种可以改变世界的神奇材料。老实说,如果你跟与石墨烯相关的人士交谈,大多数人仍然认为石墨烯会改变一切。”
“事实上,十年间也有很多公司在尝试应用石墨烯。许多终端用户在探索这种材料。从实际角度看,只有到现在和未来几年我们才慢慢接近石墨烯应用的转折点。”
石墨烯“上路”
从音频到沥青路面:石墨烯的高强度也激发了人们将之应用于建筑领域的兴趣。
建筑行业的碳排放问题由来已久;生产混凝土所排放的二氧化碳占全球二氧化碳排放量的8%。利用石墨烯强化混凝土,能够减少建筑中的混凝土用量,从而降低碳排放。
但事实证明,石墨烯的高导热率(华为近期推出的部分智能手机就应用了这一性能)同样可圈可点。
还记得几年前意大利热那亚发生的公路桥坍塌事故吗?重新铺设的沥青桥面中就含有意大利初创公司Directa Plus研制的石墨烯粉末。石墨烯成分的导热性可以有效降低路面温度,使沥青不易在低温环境下产生冷点从而导致硬化和开裂。
Directa Plus联合创始人及首席执行官朱利奥·塞萨里奥声称:“这种添加剂最出色的性能在于它能够使路面的平均使用寿命从目前的六七年提升至18至21年。”但Directa Plus公司研制的石墨烯微片的应用远不止于此。
除了塞萨里奥外,Directa Plus还有几位来自美国的联合创始人(后来将持有的股份卖给了医生起家的亿万富翁投资人黄馨祥)。他们都曾经是Union Carbide公司元老。1984年博帕尔事件(Union Carbide公司在印度博帕尔市的农药厂出现化学气体泄漏,50多万人因此而丧命)后不久,意大利人塞萨里奥加入了这家美国化工巨头(现为陶氏化学下属公司)。
这场悲剧的不幸后果促使塞萨里奥开始关注环境和可持续性,这一点也在Directa Plus的产品中得到了体现。
首先,不同于金属催化外延生长的化学制备方法,Directa Plus采用的是高温高压条件下从石墨颗粒中剥离石墨烯的物理方法。塞萨里奥表示,使用这种方法可以更方便地生产出适合贴身穿着的石墨烯面料服装和口罩(采用Directa Plus石墨烯材料的服装和口罩均已上市销售),成本也更低。
除此之外,Directa Plus还一直在与俄罗斯卢克石油公司和奥地利OMV公司合作,解决因为罗马尼亚原油泄漏而受到污染的土壤和水的净化问题。由于水能够通过石墨烯蒸发,而大多数其他液体不能,将Directa Plus的石墨烯粉末应用于围油栏可以吸附油污,清洁周围水质。吸附油污达到饱和状态后,能够作挤压处理再重复使用。
塞萨里奥在谈到使用石墨烯净化的初步成果时说:“我们清理了400吨原油,并送到炼油厂回收。”
更环保的石墨烯包装
考虑到环境效益,还可以将石墨烯用作柔性阻隔包装材料。
本月,英国一家名为Toraphene的初创公司推出了一款生物聚合物,该公司表示,这是首款可完全生物降解、可堆肥、可商业化生产的生物聚合物,能够替代塑料包装。将石墨烯与植物天然高分子聚合物复合在一起的Toraphene材料将首先作为购物袋材质投入应用。
2011年,挪威科技大学(Norwegian University of Science and Technology)的研究人员成立了Toraphene公司。但用作液体包装材料才是石墨烯包装材料的真正突破。
首席执行官高特·朱利乌森表示,四年前,消费品行业巨头联合利华(Unilever)曾经与Toraphene接洽,寻找更优质的小袋洗发水包装(联合利华方面证实两家公司曾经有过洽谈)。为了防止液体渗出,目前小袋洗发水采用的是多层塑料和一层氧化铝复合的铝塑包装袋形式。Toraphene方面表示,Toraphene材料具有液体包装所需的强度和防水性,但因为材料成分只含有机物和碳,所以更易于回收。
总之,两家公司的数轮洽谈最后以失败告终:朱利乌森表示,经过两年的合同谈判,卡夫亨氏(Kraft Heinz)的敌意收购促使联合利华不得不大幅削减成本以提高股息,研发遭受重创。随着Toraphene方面的洽谈联系人被解雇,双方未达成任何交易,为了将这种阻隔性包装推向市场,这家初创公司将目光投向了刚刚完成的一轮众筹(而且获得了大量超额认购)。
朱利乌森称:“我们制作阻隔性包装需要的这类石墨烯目前的散装价格约为每公斤200美元。”IDTechEx的柯林斯认为这个价格偏高,他表示,目前一些公司的石墨烯售价低于每公斤10美元。但Toraphene的石墨烯原料源自开采的石墨,若使用低成本合成的石墨烯,生产出来的包装材料质量达不到要求。
朱利乌森说:“因为我们用到的石墨烯量非常少(石墨烯在包装原材料中所占比例不到0.2%),所以我们生产的石墨烯包装具有很好的市场前景。加入石墨烯可能会增加10%左右的成本,但包装的牢固性提升了20%以上。我们可以造福社会。”
下一个应用领域:纸质咖啡杯。目前的纸质咖啡杯使用塑料衬里来防止渗漏,很难回收利用。Toraphene已经申请专利将Toraphene材料用作咖啡杯衬里,目前正在争取获得美国和欧洲的食品标准监管机构的批准。
柯林斯认为,石墨烯在这类领域才能够真正大获成功。(据IDTechEx估算,到2031年,各种石墨烯材料的市场价值将从目前的不到1亿美元上涨到7亿美元。)确实,因为使用了石墨烯材料,耳机、网球拍、鞋子等许多消费品都实现了增值销售,但他也表示:“只有销售了成千上百吨的材料才算是成功。”
柯林斯说:“以汽车公司为例,它们不会花钱购买耐磨衬垫,因为石墨烯会拉高营销成本。这就是现实。这种产品生命周期经济学有意义吗?而这就是那个转折点的主旨所在。”
高歌猛进
我们终于谈到了石墨烯领域当前最受关注的公司之一:Skeleton Technologies。
这家有着爱沙尼亚和德国背景的公司与欧洲几家汽车巨头签订了合同,为后者生产用于存储能量的石墨烯电池(暂时未公布合作品牌)。
把普通的石墨烯一层层堆叠起来会发生聚集并最终变回石墨。为了解决这一难题,Skeleton开发了一种专利方法来制造弯曲的石墨烯材料,并将这种材料用于超级电容器。
这款石墨烯增强型电池可以在数秒内充满电,一百万次充放电循环后都不会退化,并且不需要锂、钴等稀缺材料。目前,这些超级电容器已经在挖掘机、医疗设备和运输工具中得到应用:在德国曼海姆、海德堡和路德维希港等城市,超级电容器被用于回收有轨电车的制动能量,再将回收的能量用来加速。
Skeleton的首席执行官塔维·马迪伯克说:“在所有类型的电池解决方案中,超级电容器成本最低、体积最小。”然而,与传统的锂电池相比,这些超级电容器储存的能量更少,因此,石墨烯超级电容器很可能会与其他技术共存并相互补充。
马迪伯克称,弯曲的石墨烯最大的好处是能够处理导致标准锂电池过热和随着时间的推移而退化的峰值负载;两者相结合可以让电池组体积缩小30%,使用寿命延长一倍。他还谈到,随着相对不可预测的可再生能源影响力增强,Skeleton的超级电容器在维持电网稳定方面潜力巨大。
早在2009年石墨烯材料刚刚兴起之际,Skeleton就已经开始开发石墨烯技术,但直到几年前才开始将其超级电容器商业化。由于积压的合同已经超过1.5亿欧元(1.82亿美元),Skeleton在10月的一轮融资中筹集了4100万欧元来扩大规模,并为推出“超级电池”做准备:马迪伯克认为这是一个价值600亿欧元的潜在市场。
作电子商务出身的马迪伯克表示:“如果2009年的时候知道需要经历如此漫长的历程,或许我们未必就会创办这家公司。石墨烯的发展和走向市场都需要有足够的耐心。”(财富中文网)
译者:唐尘
Take a piece of adhesive tape and apply it to the “lead” of a pencil. Pull the tape away, and it may still have some thin flakes of graphite attached. Fold the tape in half and unfold it, to split the flakes. Do this 10 or 20 times and, if your technique is good, then congratulations—you’ve just made the thinnest known material, and almost the strongest.
The tape trick is literally how Andre Geim and Konstantin Novoselov managed to first isolate graphene—an atom-thick and therefore two-dimensional layer of carbon—at the U.K.’s University of Manchester in 2004. Six years later, the physicists won the Nobel Prize for their efforts, and for good reason.
Graphene’s properties are extraordinary, as shown in emerging products that incorporate the material: better-sounding headphones, cooler smartphones, tougher roads, and more environmentally friendly shampoo packaging.
Not only is graphene the world’s thinnest and second-strongest material—a one-dimensional form of carbon called carbyne has overtaken it there—but it’s incredibly light and transparent. It’s also either very flexible or very stiff, depending on how it’s treated. It’s among the best thermal conductors and the fastest electrical conductors, and it’s also great at letting water through while blocking anything else, making it an excellent filter and barrier. And, as Geim and Novoselov demonstrated, graphene can be quite easy to make.
These properties, plus the Nobel laureates’ remarkable story, led to a ton of graphene hype around a decade ago. But a lot of work still needed to be done, such as figuring out how best to make and wrangle graphene; finding applications where it makes economic sense; and slowly constructing new markets. So the hype died down.
Now, however, the wonder substance’s time may be arriving.
Listen up
“I can hear every musical detail with a level of clarity I’ve only ever experienced from the podium in front of an orchestra,” enthused Gustavo Dudamel, the music director of the Los Angeles Philharmonic, as he endorsed the world’s first graphene-based headphones—a set called GQ, made by a Canadian startup called Ora—in a statement.
Harnessing graphene’s stiffness, lightness, and damping properties—its ability to stop moving as soon as an electrical current stops passing through it—Ora is using graphene oxide to make membranes for headphones and loudspeakers. Novoselov himself has hailed the firm for ensuring that “graphene is officially out of the lab and into the audio world.”
“For almost two decades now, graphene’s theorized properties have been viewed as the ‘holy grail’ diaphragm material for loudspeakers,” says Ora cofounder Ari Pinkas, explaining that speaker designers usually have to compromise on either stiffness, lightness, or damping.
Pinkas says his company is working with major laptop and smartphone brands on making smaller and louder speakers for their devices, with some designs set to launch in 2022. However, citing nondisclosure agreements, he isn’t naming any names.
“When graphene burst onto the scene, it was a wonder material that would change the world,” says Richard Collins, a principal analyst at the advanced-technology market research firm IDTechEx. “To be honest, if you talk to a lot of graphene people, they still think it will change everything.
“What’s happened is, over that 10-year period, you’ve had a lot of companies trial it. You’ve had a lot of end users explore it. Realistically, only now and over the next couple of years we’re reaching that inflection point.”
Hit the road
From audio to asphalt: Graphene’s strength is stirring up interest in the construction industry.
The industry has a long-standing problem with emissions; as much as 8% of the world’s CO2 emissions come from concrete production. The addition of graphene into the mix could help cut those emissions, because it would allow for stronger concrete, which means being able to use less concrete.
But graphene’s ability to quickly and efficiently conduct heat (a property that has led to its use in some recent Huawei smartphones) is also proving useful.
Remember the deadly highway bridge collapse that occurred a couple of years ago in Genoa, Italy? The asphalt on the bridge’s replacement contains graphene powder made by an Italian startup called Directa Plus. This helps distribute heat through the road surface, so in freezing temperatures there’s less likelihood of cold spots generating cracks that eventually become potholes.
“The most impressive property is that this additive is able to triple the life of the road from six to seven years to 18 to 21 years,” claims Giulio Cesareo, Directa Plus cofounder and CEO. But that’s far from the only use for the company’s graphene nanoplatelets.
Cesareo and his American cofounders—who have since sold their shares to the billionaire surgeon turned investor Patrick Soon-Shiong—are veterans of Union Carbide. The Italian joined the U.S. chemical giant (now owned by Dow) just after the 1984 Bhopal disaster, in which a Union Carbide pesticide plant in India leaked gas and poisoned more than half a million people.
The aftermath of that tragedy fueled Cesareo’s interest in the environment and sustainability, which is now playing out in Directa Plus’s work.
For one thing, Directa Plus’s method of producing graphene is based on physics rather than chemistry—instead of using chemicals to grow the substance on metal, it uses extreme heat and pressure to exfoliate graphene from graphite particles. This, says Cesareo, makes it easier and cheaper to produce graphene-based fabrics that can be safely worn on the skin, in clothing and face masks (both of which are on the market, using Directa Plus’s graphene.)
The company has also been working with Russia’s Lukoil and Austria’s OMV on decontaminating soil and water that has been polluted through oil spills in Romania. Because graphene is able to block most fluids while letting only water through, Directa Plus’s powder is being used in barriers that absorb spilled oil, cleaning up the surround. When saturated, they can effectively be squeezed out and used again.
“We removed 400 tons of crude oil that was sent back to the refinery,” says Cesareo of early deployments.
Greener packaging
Graphene’s utility as a flexible barrier is naturally very handy in the world of packaging—again, with environmental benefits in mind.
This month, a U.K.-based startup called Toraphene unveiled a biopolymer that it says provides the first fully biodegradable, compostable, and commercially viable alternative to plastic packaging. The eponymous material, which combines graphene with natural polymers from plants, is being deployed first in shopping bags.
But the real breakthrough—the one which launched Toraphene’s journey in 2011, when its founders were researchers at the Norwegian University of Science and Technology—will be in packaging for liquids.
CEO Gaute Juliussen says the consumer goods giant Unilever approached Toraphene four years ago, asking for a better shampoo sachet (Unilever confirms the companies had discussions.) Current sachets use a few layers of plastic for strength and one of aluminum oxide, to provide a barrier against the liquid oozing out. Toraphene says its material provides the strength and impermeability that is needed, but in a form that can be easily recycled as it is just organics and carbon.
In any case, the Unilever discussions fell through: After two years of contract negotiations, Juliussen says, Kraft Heinz’s attempted hostile takeover prompted big cost-cutting measures in order to boost dividends, and R&D was hit hard. With Toraphene’s contacts now having been let go, there was no deal, and the startup turned to a just completed (and heavily oversubscribed) round of crowdfunding to get its barrier packaging to market.
“The type of graphene we are looking at for packaging will currently cost in bulk around $200 per kilo,” says Juliussen. That’s high—IDTechEx’s Collins says some companies are selling graphene for under $10 per kilogram these days. But Toraphene’s graphene comes from quarried graphite rather than being synthesized at low cost, an approach which can create an inferior product.
“Because we use so little of it [less than 0.2% of the packaging is graphene] we are able to make economic packaging with it,” says Juliussen. “It adds maybe 10% or so to the cost, but then we add strength to the packaging of more than 20%. Net-net, we are able to confer a benefit.”
Next stop: paper coffee cups, which currently use a plastic lining for impermeability that also makes them difficult to recycle. Toraphene has filed a patent for the use of its material as a lining, and is currently working on approval from U.S. and European food-standards regulators.
According to Collins, it’s this sort of area where graphene could really find success. (IDTechEx reckons the market for various kinds of graphene material will be worth $700 million by 2031, up from under $100 million today.) Yes, there are consumer products that are upsold based on their use of graphene—headphones, tennis rackets, shoes—but “success is having hundreds to thousands of tons of your material being sold,” he says.
“The reality is, if you talk to an automotive company, they’re not going to spend money on a wear-resistant liner, because graphene adds marketing,” Collins says. “It’s the economics over the lifetime of the product—does it make sense? That’s the thrust of that inflection point.”
Charging forward
Which brings us finally to one of the most talked about companies currently operating in the graphene space: Skeleton Technologies.
The Estonian-German firm has contracts with some of Europe’s biggest automotive names—though it’s reluctant to publicize them for now—and not for liner material, but for energy storage in graphene-based batteries.
If you stack normal, flat graphene layers, they clump together and you end up with graphite again. So Skeleton developed a proprietary method of making curved graphene, which overcomes this problem. It uses this curved graphene in ultracapacitors.
That means batteries that can be charged in seconds, a million times over, with no need for scarce materials such as lithium and cobalt. These ultracapacitors are already being used in excavators, in medical equipment, and in transport: In the German cities of Mannheim, Heidelberg, and Ludwigshafen, they are recuperating trams’ braking energy and reusing it for acceleration.
“It’s cheaper and smaller than any type of battery solution,” says Skeleton CEO Taavi Madiberk. However, because these ultracapacitors store less energy than traditional lithium-ion batteries, it’s likely that graphene ultracapacitors will coexist with and complement other technologies.
According to Madiberk, curved graphene’s biggest benefit is in handling the peak loads that cause standard lithium-ion batteries to overheat and to degrade over time; combining the two allows for battery packs that are 30% smaller and twice as long-lasting. He also talks up the potential of Skeleton’s ultracapacitors in maintaining electrical-grid stability as relatively unpredictable renewables become more predominant.
Skeleton has been developing its technology since the early days of graphene, in 2009, but it only started commercializing its ultracapacitors a couple of years ago. With a contract backlog that already exceeds €150 million ($182 million), it raised €41 million in an October investment round to scale up and prepare for its launch of “super-batteries,” for which Madiberk sees a potential €60 billion market.
“Maybe in 2009, if I’d known how long it takes, I’m not sure we would have started the company,” says Madiberk, whose background is in e-commerce. “In terms of graphene and getting to the market, it’s patience, patience, patience.”