一份追踪人工智能发展趋势的基准报告显示,过去一年,将机器学习技术引入药物研发的投资大幅增加。
由斯坦福大学(Stanford University)的以人为本人工智能研究所(Institute for Human-Centered Artificial Intelligence)赞助发布的年度报告《人工智能指数》(Artificial Intelligence Index)揭示,投资于该领域公司和项目的资金增至138亿美元,超2019年同期的4.5倍以上。
以人为本人工智能研究所的经济学教授、高级研究员、斯坦福数字经济实验室(Stanford Digital Economy Lab)主任埃里克·布林约尔松指出:“新冠疫情是触发这种情况的部分原因。机器学习技术帮助确定了新的药物选择,帮助开发了疫苗,我们都深受其益。”
《人工智能指数》报告显示,尽管人工智能初创公司在2020年接受了有史以来最多的资金(全球投资超过400亿美元),但这些资金流向的公司越来越少。2020年,只有不到1000家人工智能初创企业获得了融资;而2017年获得融资的初创企业数量超过了4000家,曾经创下人工智能初创企业数量的新高。布林约尔松表示,这表明人工智能正在步入成熟技术的行列,逐渐从高科技初创企业走向更成熟的企业。
《人工智能指数》报告也显示出全球对人工智能专业知识的需求。2019年,有数据可循的最近一年,65%的北美人工智能博士进入了这一领域,高于2010年的44.4%。对2020年14个国家领英(LinkedIn)数据的分析显示,在几乎所有国家,涉及人工智能技能的招聘人数都比2016年显著增加,其中巴西、印度、加拿大和新加坡在这段时间内的增长幅度最大。尽管新冠疫情仍然在蔓延,领英表示,14个样本国家的招聘还在继续。
疫情似乎没有挫伤企业对人工智能的热情。LinkedIn引用麦肯锡公司(McKinsey)的一项调查中,一半的商业领袖表示,疫情不会影响他们的人工智能支出;另有27%的商业领袖表示,疫情反而促使他们增加了支出:企业加快了数字化转型的步伐,以应对远程办公、供应链中断、电子商务激增的情况,以及在线下员工减少的环境下维持工厂运转的需要。
布林约尔松强调,尽管出现了激增的态势,美国工业对人工智能的采用仍然处于早期阶段。布林约尔松对85万家美国公司进行了调查,结果显示,大部分先进技术的使用率只有个位数。他说,调查还发现只有1.3%的公司使用了任意一种机器人技术。
布林约尔松指出,人工智能及其他自动化形式的采用尚未对生产率等美国经济数据产生影响,这可以从两方面分析:首先,传统的经济统计数据不太善于捕捉人工智能带来的一些价值,但同时,他认为新技术带来的生产率增长遵循J形曲线的形状,而以现有人工智能水平,我们仍然处于曲线的底部。他说:“一项技术要想实现突破,通常需要在其他技术、人力技能和业务流程重组方面进行大量互补投资,才能出现生产率的大幅提升。”
《人工智能指数》报告表明,人工智能技术在很多方面都在持续变强。在“生成系统”中尤其如此——这一系统可以自动生成新图像或书写文本段落,与人类制作的类似作品往往难以区分。
对于一些既需要视觉技能又需要语言技能的任务,人工智能系统也取得了巨大的进步。在基准测试中,给软件出示一张图片,并提出一个必须正确回答的有关图片的问题——顶级人工智能软件的回答正确率从2015年的40%提高到了76%(人类正确率为81%)。在另一项测试中,给软件出示一张图片,提出一个难题,要求用推理来证明答案——最好的机器目前得分为70.5%,高于2018年的44%(人类平均成绩约为85%)。
报告还强调了中国和美国之间的人工智能竞赛。2020年,中国科学家在学术期刊上发表的人工智能研究论文,在数量上超过了美国;但美国科学家的论文在大型会议上被接受的频率更高,也更频繁地被全球其他研究人员引用。大学仍然是美国在人工智能技术方面实力强劲的关键因素,但同时,美国的大学严重依赖外国生源:2019年,北美的人工智能博士中有64.3%是外国学生,比2018年增加了4.3%。但是,当这些外国学生毕业后,有82%的人选择留在美国工作。
多样性仍然是人工智能工作人员面临的一大挑战。报告发现,美国近一半新入学的人工智能博士生是白人,而黑人仅占2.4%,西班牙裔占3.2%。
此外,报告表示,人工智能伦理问题仍然令人担忧。该报告称,尽管人工智能领域的偏见、公平和伦理问题受到了越来越多的关注,但人工智能领域对用以衡量伦理问题研究进展的标准缺乏共识。报告还指出,研究人员和公民社会团体对人工智能伦理的兴趣要比在人工智能技术企业工作的人强烈得多。(财富中文网)
编译:杨二一
一份追踪人工智能发展趋势的基准报告显示,过去一年,将机器学习技术引入药物研发的投资大幅增加。
由斯坦福大学(Stanford University)的以人为本人工智能研究所(Institute for Human-Centered Artificial Intelligence)赞助发布的年度报告《人工智能指数》(Artificial Intelligence Index)揭示,投资于该领域公司和项目的资金增至138亿美元,超2019年同期的4.5倍以上。
以人为本人工智能研究所的经济学教授、高级研究员、斯坦福数字经济实验室(Stanford Digital Economy Lab)主任埃里克·布林约尔松指出:“新冠疫情是触发这种情况的部分原因。机器学习技术帮助确定了新的药物选择,帮助开发了疫苗,我们都深受其益。”
《人工智能指数》报告显示,尽管人工智能初创公司在2020年接受了有史以来最多的资金(全球投资超过400亿美元),但这些资金流向的公司越来越少。2020年,只有不到1000家人工智能初创企业获得了融资;而2017年获得融资的初创企业数量超过了4000家,曾经创下人工智能初创企业数量的新高。布林约尔松表示,这表明人工智能正在步入成熟技术的行列,逐渐从高科技初创企业走向更成熟的企业。
《人工智能指数》报告也显示出全球对人工智能专业知识的需求。2019年,有数据可循的最近一年,65%的北美人工智能博士进入了这一领域,高于2010年的44.4%。对2020年14个国家领英(LinkedIn)数据的分析显示,在几乎所有国家,涉及人工智能技能的招聘人数都比2016年显著增加,其中巴西、印度、加拿大和新加坡在这段时间内的增长幅度最大。尽管新冠疫情仍然在蔓延,领英表示,14个样本国家的招聘还在继续。
疫情似乎没有挫伤企业对人工智能的热情。LinkedIn引用麦肯锡公司(McKinsey)的一项调查中,一半的商业领袖表示,疫情不会影响他们的人工智能支出;另有27%的商业领袖表示,疫情反而促使他们增加了支出:企业加快了数字化转型的步伐,以应对远程办公、供应链中断、电子商务激增的情况,以及在线下员工减少的环境下维持工厂运转的需要。
布林约尔松强调,尽管出现了激增的态势,美国工业对人工智能的采用仍然处于早期阶段。布林约尔松对85万家美国公司进行了调查,结果显示,大部分先进技术的使用率只有个位数。他说,调查还发现只有1.3%的公司使用了任意一种机器人技术。
布林约尔松指出,人工智能及其他自动化形式的采用尚未对生产率等美国经济数据产生影响,这可以从两方面分析:首先,传统的经济统计数据不太善于捕捉人工智能带来的一些价值,但同时,他认为新技术带来的生产率增长遵循J形曲线的形状,而以现有人工智能水平,我们仍然处于曲线的底部。他说:“一项技术要想实现突破,通常需要在其他技术、人力技能和业务流程重组方面进行大量互补投资,才能出现生产率的大幅提升。”
《人工智能指数》报告表明,人工智能技术在很多方面都在持续变强。在“生成系统”中尤其如此——这一系统可以自动生成新图像或书写文本段落,与人类制作的类似作品往往难以区分。
对于一些既需要视觉技能又需要语言技能的任务,人工智能系统也取得了巨大的进步。在基准测试中,给软件出示一张图片,并提出一个必须正确回答的有关图片的问题——顶级人工智能软件的回答正确率从2015年的40%提高到了76%(人类正确率为81%)。在另一项测试中,给软件出示一张图片,提出一个难题,要求用推理来证明答案——最好的机器目前得分为70.5%,高于2018年的44%(人类平均成绩约为85%)。
报告还强调了中国和美国之间的人工智能竞赛。2020年,中国科学家在学术期刊上发表的人工智能研究论文,在数量上超过了美国;但美国科学家的论文在大型会议上被接受的频率更高,也更频繁地被全球其他研究人员引用。大学仍然是美国在人工智能技术方面实力强劲的关键因素,但同时,美国的大学严重依赖外国生源:2019年,北美的人工智能博士中有64.3%是外国学生,比2018年增加了4.3%。但是,当这些外国学生毕业后,有82%的人选择留在美国工作。
多样性仍然是人工智能工作人员面临的一大挑战。报告发现,美国近一半新入学的人工智能博士生是白人,而黑人仅占2.4%,西班牙裔占3.2%。
此外,报告表示,人工智能伦理问题仍然令人担忧。该报告称,尽管人工智能领域的偏见、公平和伦理问题受到了越来越多的关注,但人工智能领域对用以衡量伦理问题研究进展的标准缺乏共识。报告还指出,研究人员和公民社会团体对人工智能伦理的兴趣要比在人工智能技术企业工作的人强烈得多。(财富中文网)
编译:杨二一
Investments to bring the power of machine learning to drug discovery have soared in the past year, according to a benchmark report that tracks trends in the development of artificial intelligence.
The money committed to companies and projects in this area increased to $13.8 billion, more than 4.5 times that invested in 2019, according to the Artificial Intelligence Index, an annual report produced under the auspices of Stanford University’s Institute for Human-Centered Artificial Intelligence (HAI).
“The pandemic is part of what drove that,” notes Erik Brynjolfsson, an economics professor, senior fellow at HAI, and director of the Stanford Digital Economy Lab. “We have all benefited from machine-learning techniques that have helped identify new drug options and helped with vaccine development.”
The A.I. Index showed that while A.I. startups received a record amount of funding in 2020, with more than $40 billion invested globally, that money went to an increasingly small number of companies. Fewer than 1,000 A.I. startups received funding in 2020 compared with more than 4,000 in 2017, which was the high-water mark for the number of A.I. startups. Brynjolfsson said this was an indication that A.I. was beginning to mature as a technology and was moving from high-tech startups into more established businesses.
The A.I. Index also showed the continued demand for A.I. expertise in business globally. In 2019, the latest year for which figures were available, 65% of North American Ph.D.s in A.I. went to work in industry, up from 44.4% in 2010. An analysis of 2020 LinkedIn data from 14 countries shows that the hiring of those with A.I. skills is significantly higher than in 2016 across almost every country, with Brazil, India, Canada, and Singapore showing the largest increase over that period. Despite the pandemic, LinkedIn indicated continued hiring across all 14 nations in the sample.
Nor does the pandemic seem to have dented business enthusiasm for A.I.: The A.I. Index cited a McKinsey survey in which half of business leaders said the pandemic would have no effect on their A.I. spending, while 27% said it was actually prompting them to increase spending, as companies accelerated digital transformation efforts to deal with remote workforces, supply chain disruptions, a jump in e-commerce, and the need to run manufacturing operations with fewer staff physically on factory floors.
Despite this surge, Brynjolfsson emphasized that adoption of A.I. was still at an early stage in American industry. In a survey of 850,000 U.S. companies that he worked on, Brynjolfsson said that adoption of most advanced technologies was in the low single-digit percentages. He said that only 1.3% of the firms in that survey reported using any kind of robotics, for instance.
He said that the fact that adoption of A.I. and other forms of automation has not yet had an impact on U.S. economic data, such as productivity, is likely a function of two things: First, he said, conventional economic statistics are not very good at capturing some of the value from A.I. But he also said that he thought productivity gains from new technologies followed a J-curve shape and that with A.I., we were still at the bottom of that curve. “A technology breakthrough often needs a lot of complementary investments in other technology, in human skills, and in reorganization of business processes before you can start to see big productivity gains,” he said.
The A.I. Index showed that the technology is continuing to become increasingly powerful in many ways. This was particularly true of so-called generative systems, which can automatically create new images or write passages of text that are often indistinguishable from similar examples made by humans.
For certain tasks that involve both visual and language skills, A.I. systems have also made a big leap forward in capabilities. On a benchmark test in which the software is given an image and a question about that image that it must answer correctly, top A.I. software now answers with 76% accuracy, up from 40% in 2015. Humans score about 81% on the test. In another test in which the software is given an image and then asked a difficult question and required to justify its answer with reasoning, the best machines now score 70.5%, up from just 44% in 2018. Humans average about 85% on this task.
The report also highlighted the continued technological arms race between China and the U.S. in A.I.: China surpassed the U.S. in 2020 in terms of the number of A.I. research papers its scientists published in academic journals, but the U.S. scientists’ papers were more frequently accepted for prestigious conferences and were more highly cited by other researchers globally. U.S. universities remain a key factor in the country’s prowess in the technology, but they are heavily dependent on foreign students: In 2019, 64.3% of A.I. Ph.D.s in North America were foreign students, 4.3% more than the year before. But of those graduating, 82% remained and took jobs in the U.S.
Diversity remains a big challenge among those working on A.I. Almost half of all new A.I. Ph.D. students in the U.S. were white, while just 2.4% were Black, and 3.2% were Hispanic, the report found.
And A.I. ethics remains a fraught area, the report indicated. It said that while an increasing amount of attention was being paid to bias, fairness, and ethics in A.I., the field lacked a consensus around benchmarks that could be used to measure progress. It also noted that there was a far stronger interest in A.I. ethics among researchers and civil society groups than there was among those working in businesses using the technology.