首页 500强 活动 榜单 商业 科技 领导力 专题 品牌中心
杂志订阅

星巴克、特斯拉和约翰迪尔有什么共同之处:人工智能

问题不再是公司是否应该采用人工智能,而是他们应该如何采用人工智能。

文本设置
小号
默认
大号
Plus(0条)

在特斯拉公司,数据驱动的洞察力使团队能够以前所未有的速度开发新版本。ZHANG PENG/LIGHTROCKET VIA GETTY IMAGES

在竞争激烈的跨境汇款(又称汇款)业务中,人工智能正日益成为关键驱动力。然而,在市场领导者和主要挑战者着手使用人工智能的方式上,对比非常鲜明。

一方面,市场领导者开发了分析平台,可以实时分析竞争对手的汇率、费用和转账时间等数据,这些数据来自大约1300个国家,涵盖650多种货币对。该平台帮助确定公司可以在哪些方面调整费用和费率以提高竞争力;将访问数据的时间缩短了90%;并减少了70%的开支。市场领导者正在使用人工智能来提高效率、调整产品和改变定价,从而实现利润最大化。

另一方面,在线挑战者利用人工智能彻底颠覆公司的运作方式。该公司使用开发的专有算法来预测业务涉及的80多个国家对所有货币的需求。由于人工智能,它不必转移资金,而是在每个国家维持银行账户来支付交易。通过消除跨境转账的需要,这家新贵缩短了处理时间,并为客户提供比竞争对手便宜80%至90%的转账费用。这家公司成立于十年前,在2021年占英国汇款市场的37%,估值120亿美元。

要旨:挑战者由于使用人工智能而实现迅猛发展,而市场领导者尽管使用了人工智能,却仍在努力保持其市场份额。

与汇款业务一样,其他领域业务也是如此。爱彼迎(Airbnb)、亚马逊(Amazon)、谷歌(Google)、音乐服务网站(Spotify)和优步(Uber)等天生的数字挑战者创造了由人工智能驱动的全新商业模式和业务流程,而大多数老牌公司则使用人工智能技术来提高效率。结果就是,挑战者成为市场颠覆者,以新的价值主张吸引客户并挑战原有市场的领导者,而市场领导者只是逐渐变得更好。难怪首席执行官们抱怨说他们无法充分发挥人工智能投资的潜力。在2021年麻省理工学院SMR-BCG人工智能研究中,只有11%的样本说他们通过使用人工智能实现了 "可观的 "的经济效益——几乎与前一年10%的样本相同。

问题不再是公司是否应该采用人工智能,而是他们应该如何采用人工智能。我们的研究表明,当公司探索使用人工智能技术时,他们最好从头开始,重新思考他们的商业模式和业务流程,将人工智能作为其业务核心。这样做将帮助他们获得竞争优势以及免受干扰。

不仅是天生的数字公司可以从头开始;霍尼韦尔(Honeywell)、约翰迪尔(John Deere)、罗尔斯-罗伊斯(Rolls-Royce)和西门子(Siemens)等老牌公司也在学习这样做。首席执行官们可以采取三大步骤来实现这一目标:

重新设计商业模式

公司可以尝试开发新的人工智能驱动商业模式。例如,农业设备制造商约翰迪尔正在设计更好的产品并提供基于人工智能技术的服务,以提高农民的盈利能力,从而为新的商业模式奠定基础。它提供智能机器,让客户能够用更少的农药种植出更多、更好的作物。例如,约翰迪尔的视觉人工智能驱动的LettuceBot使用机器学习软件来区分莴苣和杂草。它可以在一秒钟内区分莴苣和杂草,并且只用少量除草剂杀死杂草,平均减少除草剂使用达90%。

虽然约翰迪尔的云支持JDLink系统允许其连接和管理农场中的所有机器,但它还构建了一个基于人工智能的数据平台约翰迪尔运营中心,允许客户访问农场相关数据。农民可以实时监控机器运作状况,分析机器性能,确定如何最好地利用设备,并与生态系统合作伙伴合作,对方提供有助于他们决定在什么地点和什么时间种植什么作物的见解。通过提供硬件、软件、数据和专业知识,这家行业领导者帮助客户最大限度地提高生产力和降低成本。约翰迪尔目前通过溢价出售其机器和数字服务来创收,但可以想象的是,它在未来可能会与农民签订利润分享协议——这是一种截然不同的商业模式。

重新思考目标

与其说使用人工智能只是为了让业务流程更有效地运作,不如说公司可以利用人工智能技术来实现创造更多价值的目标。例如,当星巴克意识到顾客可以在网上、应用程序中、店内订购饮料,而且订购的方式已经成倍增加时,它意识到必须颠覆其流程,利用人工智能打造温馨的顾客体验。

星巴克传统上遵循先到先得的饮料制作流程,如果顾客不在店内订购饮料就去取用的话,就有可能出现饮料温度不合适的情况。因此,星巴克决定使用人工智能:它的算法将根据顾客的预计到达时间和订单来决定店内咖啡师冲泡饮料的顺序。这将有助于优化饮料制作过程并通过确保每位顾客收到的饮料温度合适来提升顾客体验。

重新构想价值链

为了有效地使用人工智能,公司必须在组织功能、内部部门、外部合作伙伴和客户之间建立新的联系。他们必须将各组流程概念化为系统,以优化人工智能的使用。

以汽车制造商特斯拉为例,它不断地与每个客户保持联系,甚至定期更新其车辆的软件。当它的竞争对手需要几个月的时间来创作新的设计时,它则会在研究数据的过程中改进产品。特斯拉的算法实时处理来自超过200万辆汽车的数据,并将结果传递给跨职能的产品开发团队。这些数据驱动的洞察力使团队能够以前所未有的速度开发新版本,部分原因是特斯拉在组织内部促进了人工智能驱动协作。

特斯拉的人工智能驱动系统也允许持续改进其制造工艺。如果客户的车辆遇到哪怕是一个小问题,例如车窗出现振动,相关数据就会实时传送给生产线上的特斯拉机器人。他们可以在员工进行测试以检查噪音是否已消除时立即调整安装过程。从某种意义上说,特斯拉颠覆了传统的产业价值链,让消费者成为其产品研发和改进周期的起点。

许多商业领袖都在庆祝他们成功地通过人工智能为现有的业务带来渐进式改进。而其他人则踏上了释放人工智能技术全部潜力的旅程。用人工智能重塑业务不再是假设命题;在人工智能时代,这可能是各公司实现蓬勃发展的唯一途径。(财富中文网)

译者:中慧言-王芳

在特斯拉公司,数据驱动的洞察力使团队能够以前所未有的速度开发新版本。ZHANG PENG/LIGHTROCKET VIA GETTY IMAGES

在竞争激烈的跨境汇款(又称汇款)业务中,人工智能正日益成为关键驱动力。然而,在市场领导者和主要挑战者着手使用人工智能的方式上,对比非常鲜明。

一方面,市场领导者开发了分析平台,可以实时分析竞争对手的汇率、费用和转账时间等数据,这些数据来自大约1300个国家,涵盖650多种货币对。该平台帮助确定公司可以在哪些方面调整费用和费率以提高竞争力;将访问数据的时间缩短了90%;并减少了70%的开支。市场领导者正在使用人工智能来提高效率、调整产品和改变定价,从而实现利润最大化。

另一方面,在线挑战者利用人工智能彻底颠覆公司的运作方式。该公司使用开发的专有算法来预测业务涉及的80多个国家对所有货币的需求。由于人工智能,它不必转移资金,而是在每个国家维持银行账户来支付交易。通过消除跨境转账的需要,这家新贵缩短了处理时间,并为客户提供比竞争对手便宜80%至90%的转账费用。这家公司成立于十年前,在2021年占英国汇款市场的37%,估值120亿美元。

要旨:挑战者由于使用人工智能而实现迅猛发展,而市场领导者尽管使用了人工智能,却仍在努力保持其市场份额。

与汇款业务一样,其他领域业务也是如此。爱彼迎(Airbnb)、亚马逊(Amazon)、谷歌(Google)、音乐服务网站(Spotify)和优步(Uber)等天生的数字挑战者创造了由人工智能驱动的全新商业模式和业务流程,而大多数老牌公司则使用人工智能技术来提高效率。结果就是,挑战者成为市场颠覆者,以新的价值主张吸引客户并挑战原有市场的领导者,而市场领导者只是逐渐变得更好。难怪首席执行官们抱怨说他们无法充分发挥人工智能投资的潜力。在2021年麻省理工学院SMR-BCG人工智能研究中,只有11%的样本说他们通过使用人工智能实现了 "可观的 "的经济效益——几乎与前一年10%的样本相同。

问题不再是公司是否应该采用人工智能,而是他们应该如何采用人工智能。我们的研究表明,当公司探索使用人工智能技术时,他们最好从头开始,重新思考他们的商业模式和业务流程,将人工智能作为其业务核心。这样做将帮助他们获得竞争优势以及免受干扰。

不仅是天生的数字公司可以从头开始;霍尼韦尔(Honeywell)、约翰迪尔(John Deere)、罗尔斯-罗伊斯(Rolls-Royce)和西门子(Siemens)等老牌公司也在学习这样做。首席执行官们可以采取三大步骤来实现这一目标:

重新设计商业模式

公司可以尝试开发新的人工智能驱动商业模式。例如,农业设备制造商约翰迪尔正在设计更好的产品并提供基于人工智能技术的服务,以提高农民的盈利能力,从而为新的商业模式奠定基础。它提供智能机器,让客户能够用更少的农药种植出更多、更好的作物。例如,约翰迪尔的视觉人工智能驱动的LettuceBot使用机器学习软件来区分莴苣和杂草。它可以在一秒钟内区分莴苣和杂草,并且只用少量除草剂杀死杂草,平均减少除草剂使用达90%。

虽然约翰迪尔的云支持JDLink系统允许其连接和管理农场中的所有机器,但它还构建了一个基于人工智能的数据平台约翰迪尔运营中心,允许客户访问农场相关数据。农民可以实时监控机器运作状况,分析机器性能,确定如何最好地利用设备,并与生态系统合作伙伴合作,对方提供有助于他们决定在什么地点和什么时间种植什么作物的见解。通过提供硬件、软件、数据和专业知识,这家行业领导者帮助客户最大限度地提高生产力和降低成本。约翰迪尔目前通过溢价出售其机器和数字服务来创收,但可以想象的是,它在未来可能会与农民签订利润分享协议——这是一种截然不同的商业模式。

重新思考目标

与其说使用人工智能只是为了让业务流程更有效地运作,不如说公司可以利用人工智能技术来实现创造更多价值的目标。例如,当星巴克意识到顾客可以在网上、应用程序中、店内订购饮料,而且订购的方式已经成倍增加时,它意识到必须颠覆其流程,利用人工智能打造温馨的顾客体验。

星巴克传统上遵循先到先得的饮料制作流程,如果顾客不在店内订购饮料就去取用的话,就有可能出现饮料温度不合适的情况。因此,星巴克决定使用人工智能:它的算法将根据顾客的预计到达时间和订单来决定店内咖啡师冲泡饮料的顺序。这将有助于优化饮料制作过程并通过确保每位顾客收到的饮料温度合适来提升顾客体验。

重新构想价值链

为了有效地使用人工智能,公司必须在组织功能、内部部门、外部合作伙伴和客户之间建立新的联系。他们必须将各组流程概念化为系统,以优化人工智能的使用。

以汽车制造商特斯拉为例,它不断地与每个客户保持联系,甚至定期更新其车辆的软件。当它的竞争对手需要几个月的时间来创作新的设计时,它则会在研究数据的过程中改进产品。特斯拉的算法实时处理来自超过200万辆汽车的数据,并将结果传递给跨职能的产品开发团队。这些数据驱动的洞察力使团队能够以前所未有的速度开发新版本,部分原因是特斯拉在组织内部促进了人工智能驱动协作。

特斯拉的人工智能驱动系统也允许持续改进其制造工艺。如果客户的车辆遇到哪怕是一个小问题,例如车窗出现振动,相关数据就会实时传送给生产线上的特斯拉机器人。他们可以在员工进行测试以检查噪音是否已消除时立即调整安装过程。从某种意义上说,特斯拉颠覆了传统的产业价值链,让消费者成为其产品研发和改进周期的起点。

许多商业领袖都在庆祝他们成功地通过人工智能为现有的业务带来渐进式改进。而其他人则踏上了释放人工智能技术全部潜力的旅程。用人工智能重塑业务不再是假设命题;在人工智能时代,这可能是各公司实现蓬勃发展的唯一途径。(财富中文网)

译者:中慧言-王芳

In the competitive cross-border remittances (aka money transfers) business, artificial intelligence is increasingly becoming a key driver. Yet, there couldn’t be a starker contrast between the manner in which the market leader and the prime challenger have set about using A.I.

On the one hand, the leader has developed an analytics platform that analyzes data in real time on its rivals’ exchange rates, fees, and transfer times from around 1,300 countries, spanning 650-plus currency pairs. The platform has helped identify where the company can alter its fees and rates to be more competitive; slashed the time to access data by 90%; and reduced its expenses by 70%. The leader is using A.I. to become more efficient, tweak its offerings, and alter its pricing, so it can maximize profits.

On the other hand, the online-only challenger has used A.I. to completely rethink the way the business works. It uses the proprietary algorithms it has developed to predict the demand for all the currencies in the 80-plus countries in which it operates. Thanks to A.I., it doesn’t have to move money around, and, instead, maintains bank accounts in each country to cover its transactions. By eliminating the need to transfer money across borders, the upstart has reduced its processing times and offers customers transfers that are 80% to 90% cheaper than rivals. Founded just a decade ago, the challenger accounted for 37% of the U.K. money transfers market in 2021, and boasted a valuation of $12 billion.

Bottom line: The challenger is growing rapidly because of A.I., while the leader is fighting to maintain share despite A.I..

As in the remittances business, so it has been elsewhere. Born-digital challengers—such as Airbnb, Amazon, Google, Spotify, and Uber—create all-new business models and business processes driven by A.I., while most incumbents use the technology to improve their efficiency. As a result, the challengers become market disrupters, wooing customers with new value propositions and challenging the leaders, while the latter only become incrementally better. No wonder CEOs complain that they’re unable to realize the full potential of their A.I. investments. Just 11% of the sample in the 2021 MIT SMR-BCG A.I. study said they had gained “substantial” financial benefits by using A.I.—almost the same as the previous year’s 10%.

The issue is no longer whether companies should adopt A.I., but how they should do so. Our studies show that when organizations explore the use of the technology, they would do well to start from scratch and rethink their business models and business processes, putting A.I. at their core. Doing so will help them gain an advantage over existing rivals as well as protection from disruption.

It isn’t only born-digital companies that can start afresh; incumbents such as Honeywell, John Deere, Rolls-Royce, and Siemens are also learning to do so. CEOs can take three steps to make that happen:

Redesign business models

Companies can try to develop new A.I.-powered business models. For example, the agricultural equipment-maker, John Deere, is designing better products as well as providing smart technology-based services to boost farmers’ profitability, thereby laying the foundations of a new business model. It offers smart machines, which allow its customers to grow more and better crops with fewer pesticides. For instance, John Deere’s vision A.I.-powered LettuceBot uses machine-learning software to distinguish between lettuce plants and weeds. It can do so in under a second, and kill only the latter with a small amount of herbicide, reducing herbicide use on average by 90%.

While John Deere’s cloud-enabled JDLink system allows it to connect and manage all the machines on a farm, it has also built an A.I.-based data platform, John Deere Operations Center, which allows customers to access farm-related data. Farmers can monitor activity in real time, analyze performance, determine how best to utilize equipment, and collaborate with ecosystem partners for insights that help them decide what to plant, where, and when. By providing hardware, software, data, and expertise, the industry leader helps its customers maximize productivity and minimize costs. John Deere currently generates revenues by selling its machines and digital services at a premium, but it could, conceivably, enter into profit-sharing agreements with farmers in the future—a radically different business model.

Rethink objectives

Instead of using A.I. just to make business processes work more efficiently, companies can use the technology to attain objectives that also create more value. For example, when Starbucks woke up to the fact that the ways in which customers could order drinks—online, in app, in store—had multiplied, it realized that it would have to turn its processes on their head to create a warm customer experience with A.I..

Starbucks had traditionally followed a first-come, first-served drinks-making process, which ran the risk of drinks not being served at the right temperature if customers were going to pick up their drinks without ordering them in stores. Starbucks has therefore decided to use A.I.: Its algorithms will decide the order in which baristas in stores should brew drinks, based on customers’ estimated arrival times and orders. That will help optimize the drink-making process and enhance the customer experience by ensuring that each customer receives the drink at the temperature at which it should be consumed.

Reimagine value chains

To use A.I. effectively, companies have to develop fresh links between organizational functions, internal departments, external partners, and customers. They must conceptualize groups of processes as systems to optimize the use of A.I..

Consider, for instance, the automaker Tesla, which continuously maintains relationships with each of its customers, even updating the software of its vehicles periodically. While its rivals take months to create fresh designs, the challenger improves its products as it studies data. Tesla’s algorithms process data from its fleet of over 2 million cars in real time, and pass on the findings to its cross-functional product development teams. Those data-driven insights enable the teams to develop new versions at unprecedented speed, partly because of the A.I.-powered collaboration that Tesla fosters inside the organization.

Tesla’s A.I.-powered systems allow for the continuous improvement of its manufacturing processes as well. If a customer’s vehicle runs into even a minor problem, such as experiencing vibrations in the car’s windows, the data are communicated in real time to Tesla’s robots on the manufacturing line. They can tweak the installation process immediately while employees carry out tests to check if the noises have been eliminated. In a sense, Tesla has upended the traditional industry value chain, making consumers the starting point of its product development and improvement cycle.

Many business leaders are celebrating their success in bring about incremental improvement in their existing businesses with A.I. while others are embarking on the journey to unlock the full potential of the technology. Reinventing business with A.I. is no longer a hypothetical proposition; in the age of A.I., that may be the only way for every organization to thrive.

财富中文网所刊载内容之知识产权为财富媒体知识产权有限公司及/或相关权利人专属所有或持有。未经许可,禁止进行转载、摘编、复制及建立镜像等任何使用。
0条Plus
精彩评论
评论

撰写或查看更多评论

请打开财富Plus APP

前往打开