半个多世纪以来,半导体一直是技术创新的核心,技术的进步与半导体性能、能耗和成本的发展同步。现在,随着对高性能计算 (HPC) 以及5G和人工智能应用的需求不断增长,技术进步的需求猛增,为半导体技术新构想的未来铺平了道路,未来可以让无限的可能成为现实。
要了解这个未来,就有必要回顾60年前的发明,当时人们发明了一种将许多晶体管集成在同一块芯片上的方法——集成电路(IC)或微芯片。在随后的几年里,半导体技术通过不断的小型化而实现进步,正如摩尔定律所预测的那样,集成电路上的晶体管数量每隔一年就会翻一番,该定律以美国工程师戈登·摩尔(Gordon Moore)的名字命名。这种持续的进步使我们的手机拥有比1969年阿波罗11号登月时所运用的70磅重的古老计算机更强大的计算能力。
从成本到普及再到价值
半导体技术和集成电路的一个关键属性是不断降低每个功能的成本。随着时间的推移,这种持续的成本降低导致了半导体技术的普及。例如,1970年,美国电话电报公司(AT&T)首次将可视电话商业化,但由于成本高昂,它的用户不到500人。
半导体技术的大规模成本降低得益于纯晶圆代工厂模式的诞生,这种模式是台积电在35年前成立时开创的。在这种模式下,纯晶圆代工厂经营的半导体制造厂专注于为其他公司生产集成电路,而不是提供自己设计的集成电路产品。由于集成电路生产设施的建造和维护成本高昂,而且可能会极大地消耗企业的资金,因此将生产外包给代工厂可以让企业将资源集中在最终产品上。这使得无晶圆厂的生产外包(仅限于设计)行业蓬勃发展,并有助于实现技术的大规模普及,使远程工作、在线学习、共享经济和娱乐流媒体成为如今的现实。
新冠肺炎疫情和随之而来的封城成为技术创新的另一个转折点,10年以上价值的数字化在一年之内实现,半导体需求也随之增加。据麦肯锡公司(McKinsey & Co.)预测,按照目前的速度,到2030年,全球半导体年收入将超过1万亿美元,对全球电子产品增长的直接贡献将达到3-4万亿美元。然而,持续降低成本导致了对半导体价值的低估。正如最近半导体供应链的挑战所清楚地表明的那样,半导体无处不在,并在现代社会中发挥着重要作用。
打开通往未来世界的大门
随着计算设备变得无处不在,在全球网络中生成和通信的数据量(通常是实时的)呈指数级增长。为了跟上这种增长,高性能计算变得至关重要,并且呈爆炸性增长。高性能计算指的是以高速处理数据和执行复杂计算以解决性能密集型问题的能力。如今,高性能计算已经超越智能手机成为增长的驱动力。据Report Ocean的研究,这是半导体行业增长最快的领域之一,预计到2027年,全球高性能计算芯片组市场规模将从2019年的43亿美元增至136.8亿美元。
虚拟世界与物理世界的融合将给人们的互动方式带来翻天覆地的变化,而高性能计算的应用使之成为现实。除了大量由半导体制成的传感器和执行器之外,虚拟世界和物理世界的这种集成还需要智能设备、可穿戴设备、物联网等硬件,以及5G、人工智能和大数据分析等用于通信、理解信息和决策的技术。对于每一种应用,半导体含量及其提供的价值都将迅速提高。
半导体将为越来越多的产品注入智能和新功能,从而提高这些产品的价值。例如,自动驾驶汽车将通过先进的芯片变得更加安全和节能,这些芯片允许执行复杂的软件功能和分析。根据这一预期的自动驾驶汽车能源效率,德克萨斯大学的研究估计,与美国目前的地面交通条件相比,净能源将减少 11% 至 55%。社会也期待能够出现超出我们想象的新的用户应用程序。半导体提供的计算能力将推动个性化和社区医疗以及疫苗和药物的研发。打击社交媒体上的虚假信息需要更好的算法和计算能力来训练人工智能模型。
例如,用于创建真实的堪比人类质量文本的最先进的人工智能语言模型之一GPT-3需要300 zetta-FLOPS (一种衡量超级计算机性能的指标)才能在高性能计算云上进行训练。作为回报,这种人工智能语言模型所实现的能力也会令人印象深刻。最近,《纽约时报》的科技专栏作家凯文·卢斯(Kevin Roose)用GPT-3完成了一篇书评。
人工智能通常被认为是一种主要涉及软件和算法的技术。然而,硬件技术打开了通往虚拟世界的大门,让我们能够使用从人工智能中获得的信息。因此,即使在元宇宙中,实体也占据了中心位置。
共有的乐观精神
随着半导体技术的不断进步,满足了5G和人工智能时代的发展需求,能源效率已成为最重要的衡量标准,不仅因为计算能力已经因无法散热而受到限制,还因为全球计算能源使用的升级速度比任何其他应用领域都快。单是半导体技术带来的计算能源效率就在以飞快的速度提高——每两年提高两倍——人们普遍乐观地认为,技术将像过去50年那样继续像上了发条一样快速发展。
这种经常与摩尔定律混为一谈的共有的乐观精神也许比“定律”本身更重要。正是这个行业和整个社会所共有的乐观精神,推动该行业直面挑战,并使预测成为自我应验的预测。
在未来的50年里,未来一代可能会使用虚拟现实和增强现实(VR/AR)作为他们与世界互动的主要方式。如今的VR/AR头显平均重量超过一磅,电池续航时间不到两三个小时,而且价格昂贵,这让我们想起了25年前的手机。要达到如今手机的普及程度,VR/AR设备还需要提高100倍以上。这只能通过半导体技术的不断进步来实现。
未来几十年将是半导体产业的黄金时代。在过去的50年里,半导体技术的发展就像在隧道里行走一样。前进的道路很明确,因为每个人都努力沿着一条明确的道路前进,那就是缩小晶体管。现在我们正在接近隧道的出口。隧道之外还有更多的可能性:从材料到架构的创新使新的发展路径成为可能,新的应用程序也明确了新的方向。我们不再受隧道的限制,如今,我们拥有无限的创新空间。(财富中文网)
刘德音是台积电董事长。
译者:中慧言-王芳
半个多世纪以来,半导体一直是技术创新的核心,技术的进步与半导体性能、能耗和成本的发展同步。现在,随着对高性能计算 (HPC) 以及5G和人工智能应用的需求不断增长,技术进步的需求猛增,为半导体技术新构想的未来铺平了道路,未来可以让无限的可能成为现实。
要了解这个未来,就有必要回顾60年前的发明,当时人们发明了一种将许多晶体管集成在同一块芯片上的方法——集成电路(IC)或微芯片。在随后的几年里,半导体技术通过不断的小型化而实现进步,正如摩尔定律所预测的那样,集成电路上的晶体管数量每隔一年就会翻一番,该定律以美国工程师戈登·摩尔(Gordon Moore)的名字命名。这种持续的进步使我们的手机拥有比1969年阿波罗11号登月时所运用的70磅重的古老计算机更强大的计算能力。
从成本到普及再到价值
半导体技术和集成电路的一个关键属性是不断降低每个功能的成本。随着时间的推移,这种持续的成本降低导致了半导体技术的普及。例如,1970年,美国电话电报公司(AT&T)首次将可视电话商业化,但由于成本高昂,它的用户不到500人。
半导体技术的大规模成本降低得益于纯晶圆代工厂模式的诞生,这种模式是台积电在35年前成立时开创的。在这种模式下,纯晶圆代工厂经营的半导体制造厂专注于为其他公司生产集成电路,而不是提供自己设计的集成电路产品。由于集成电路生产设施的建造和维护成本高昂,而且可能会极大地消耗企业的资金,因此将生产外包给代工厂可以让企业将资源集中在最终产品上。这使得无晶圆厂的生产外包(仅限于设计)行业蓬勃发展,并有助于实现技术的大规模普及,使远程工作、在线学习、共享经济和娱乐流媒体成为如今的现实。
新冠肺炎疫情和随之而来的封城成为技术创新的另一个转折点,10年以上价值的数字化在一年之内实现,半导体需求也随之增加。据麦肯锡公司(McKinsey & Co.)预测,按照目前的速度,到2030年,全球半导体年收入将超过1万亿美元,对全球电子产品增长的直接贡献将达到3-4万亿美元。然而,持续降低成本导致了对半导体价值的低估。正如最近半导体供应链的挑战所清楚地表明的那样,半导体无处不在,并在现代社会中发挥着重要作用。
打开通往未来世界的大门
随着计算设备变得无处不在,在全球网络中生成和通信的数据量(通常是实时的)呈指数级增长。为了跟上这种增长,高性能计算变得至关重要,并且呈爆炸性增长。高性能计算指的是以高速处理数据和执行复杂计算以解决性能密集型问题的能力。如今,高性能计算已经超越智能手机成为增长的驱动力。据Report Ocean的研究,这是半导体行业增长最快的领域之一,预计到2027年,全球高性能计算芯片组市场规模将从2019年的43亿美元增至136.8亿美元。
虚拟世界与物理世界的融合将给人们的互动方式带来翻天覆地的变化,而高性能计算的应用使之成为现实。除了大量由半导体制成的传感器和执行器之外,虚拟世界和物理世界的这种集成还需要智能设备、可穿戴设备、物联网等硬件,以及5G、人工智能和大数据分析等用于通信、理解信息和决策的技术。对于每一种应用,半导体含量及其提供的价值都将迅速提高。
半导体将为越来越多的产品注入智能和新功能,从而提高这些产品的价值。例如,自动驾驶汽车将通过先进的芯片变得更加安全和节能,这些芯片允许执行复杂的软件功能和分析。根据这一预期的自动驾驶汽车能源效率,德克萨斯大学的研究估计,与美国目前的地面交通条件相比,净能源将减少 11% 至 55%。社会也期待能够出现超出我们想象的新的用户应用程序。半导体提供的计算能力将推动个性化和社区医疗以及疫苗和药物的研发。打击社交媒体上的虚假信息需要更好的算法和计算能力来训练人工智能模型。
例如,用于创建真实的堪比人类质量文本的最先进的人工智能语言模型之一GPT-3需要300 zetta-FLOPS (一种衡量超级计算机性能的指标)才能在高性能计算云上进行训练。作为回报,这种人工智能语言模型所实现的能力也会令人印象深刻。最近,《纽约时报》的科技专栏作家凯文·卢斯(Kevin Roose)用GPT-3完成了一篇书评。
人工智能通常被认为是一种主要涉及软件和算法的技术。然而,硬件技术打开了通往虚拟世界的大门,让我们能够使用从人工智能中获得的信息。因此,即使在元宇宙中,实体也占据了中心位置。
共有的乐观精神
随着半导体技术的不断进步,满足了5G和人工智能时代的发展需求,能源效率已成为最重要的衡量标准,不仅因为计算能力已经因无法散热而受到限制,还因为全球计算能源使用的升级速度比任何其他应用领域都快。单是半导体技术带来的计算能源效率就在以飞快的速度提高——每两年提高两倍——人们普遍乐观地认为,技术将像过去50年那样继续像上了发条一样快速发展。
这种经常与摩尔定律混为一谈的共有的乐观精神也许比“定律”本身更重要。正是这个行业和整个社会所共有的乐观精神,推动该行业直面挑战,并使预测成为自我应验的预测。
在未来的50年里,未来一代可能会使用虚拟现实和增强现实(VR/AR)作为他们与世界互动的主要方式。如今的VR/AR头显平均重量超过一磅,电池续航时间不到两三个小时,而且价格昂贵,这让我们想起了25年前的手机。要达到如今手机的普及程度,VR/AR设备还需要提高100倍以上。这只能通过半导体技术的不断进步来实现。
未来几十年将是半导体产业的黄金时代。在过去的50年里,半导体技术的发展就像在隧道里行走一样。前进的道路很明确,因为每个人都努力沿着一条明确的道路前进,那就是缩小晶体管。现在我们正在接近隧道的出口。隧道之外还有更多的可能性:从材料到架构的创新使新的发展路径成为可能,新的应用程序也明确了新的方向。我们不再受隧道的限制,如今,我们拥有无限的创新空间。(财富中文网)
刘德音是台积电董事长。
译者:中慧言-王芳
For over half a century, semiconductors have been at the heart of technological innovation, with advancements in technology marching to the cadence of developments in semiconductor performance, energy consumption, and cost. Now, with the ever-growing demand for high-performance computing (HPC), as well as 5G and A.I. applications, the need for technological advancement has skyrocketed, paving the way for a newly imagined future for semiconductor technology, where infinite possibilities can be realized.
To understand this future, it makes sense to look back 60 years in the past, to the invention of a way to put many transistors together on the same chip—the integrated circuit (IC) or microchip. Throughout the years that followed, semiconductor technology advanced through continuous miniaturization, which involved doubling the number of transistors on an integrated circuit every other year as predicted by Moore’s law, named after American engineer Gordon Moore. This continued advancement is what allows our mobile phones to have far more compute power than the now ancient 70-pound computer that landed Apollo 11 on the moon in 1969.
From cost to ubiquity to value
A key attribute of semiconductor technology and the integrated circuit has been relentless reduction of cost per function. This continuous cost reduction led to ubiquitous deployment of semiconductor technologies over time. The picture-phone, for instance, was first commercialized in 1970 by AT&T, but because of its high cost, it had fewer than 500 customers.
Large-scale cost reduction of semiconductor technology was helped along by the birth of the pure-play foundry model, pioneered by TSMC at its establishment 35 years ago. In this model, pure-play foundries operate semiconductor fabrication plants focused on producing ICs for other companies instead of offering IC products of their own design. As IC production facilities are expensive to build and maintain, and can be a huge drain on finances for companies, outsourcing this production to foundries allowed companies to focus their resources on their end product. This allowed the fabless (design only) industry to flourish and helped enable the large-scale ubiquitous deployment of the technologies that make remote working, online learning, the sharing economy, and entertainment streaming a reality today.
COVID-19 and the lockdowns it brought along with it became another turning point for technology innovation with more than 10 years’ worth of digitization happening over a single year, increasing the demand for semiconductors. At the current pace, annual global semiconductor revenue will grow to more than $1 trillion by 2030, directly contributing to $3 trillion to $4 trillion of global electronics growth, according to McKinsey & Co. Yet, the promise of continuous cost reduction has created an expectation that underestimates the value of semiconductors. As the recent semiconductor supply-chain challenge so clearly illustrates, semiconductors are everywhere and fulfill a valuable and vital role in modern society.
Opening doors to a future world
As computing devices become ubiquitous, the amount of data generated and communicated across a global network, often in real time, has grown exponentially. To keep up with this growth, high-performance computing (HPC) has become crucial and is seeing explosive growth. HPC is the ability to process data and perform complex calculations at high speeds to solve performance-intensive problems. Today, HPC has already surpassed the smartphone as a growth driver. It is one of the fastest growing segments of the semiconductor industry, with the global HPC chipset market size expected to reach $13.68 billion by 2027 from $4.30 billion in 2019, according to research from Report Ocean.
The integration of the virtual with the physical world will bring about a sea change in the way society interacts with one another and will be enabled by HPC applications. In addition to the multitude of sensors and actuators made of semiconductors, this integration of the virtual and the physical worlds requires hardware like smart appliances, wearable devices, IoT, and technologies like 5G, A.I., and big-data analytics for communicating, understanding information, and decision-making. For each of these applications, the semiconductor content, and the value it provides, will increase rapidly.
Semiconductors will imbue intelligence and new functionalities into more and more products, elevating the value of such products. For example, autonomous driving vehicles will become even safer and more energy efficient with advanced chips which allow for the execution of complex software functionalities and analytics. University of Texas research estimates a net energy reduction of 11% to 55% versus the current ground transportation conditions in the U.S., based off this expected autonomous vehicle energy efficiency. Society is also expecting new user applications beyond what we can imagine today. Personalized and community medicine as well as vaccine and drug discovery will get a boost from the computing power provided by semiconductors. Combating disinformation on social media will need better algorithms and computing power for training A.I. models.
As an example, one of the most advanced A.I. language models for creating realistic human-quality text, the GPT-3, requires 300 zetta-FLOPS (a measure of supercomputer performance) to train on a high-performance compute cloud. In return, the capability enabled by this A.I. language model can be impressive. GPT-3 recently was used by Kevin Roose, a tech columnist for the New York Times, to complete a book review.
A.I. is often thought of as a technology involving primarily software and algorithms. Yet, hardware technology is what opens the door to the virtual world and allows us to use the information derived from A.I. Thus, even in the metaverse, the physical takes center stage.
A shared optimism
As semiconductor technology advances to meet the needs of the 5G and A.I. era, energy efficiency has become the most important metric not only because computing power is already throttled by the inability to remove heat, but also because the global energy use of computing escalates faster than any other application area. Energy efficiency of computing due to semiconductor technology alone has been advancing at a rapid pace—2X every two years—and there is shared optimism that technology will continue to advance like clockwork as it did over the past 50 years.
This shared optimism that is often conflated with Moore’s law is perhaps more important than the “law” itself. It is this shared optimism by the industry and society at large, that has propelled the industry to meet the challenge and make the prophecy a self-fulfilling one.
In the next 50 years, the future generation will likely use virtual- and augmented-reality (VR/AR) as their principal means of interaction with the world. Today’s average VR/AR headsets weigh well over a pound, with a battery life of less than two to three hours, and a high price tag, which reminds us of the cell phones of 25 years ago. To achieve the same level of ubiquity as today’s cell phones, VR/AR devices will need to improve by more than 100 times. This can only be done with continuous advancement of semiconductor technology.
The upcoming decades will be a golden era for the semiconductor industry. Over the past 50 years, the development of semiconductor technology has been akin to walking inside a tunnel. The way ahead was clear as there was a well-defined path that everyone diligently followed—shrinking the transistor. Now we are approaching the exit of the tunnel. There are many more possibilities outside the tunnel: new paths made possible by innovations from materials to architecture and new destinations defined by new applications. We are no longer bound by the confines of the tunnel, and we now have unlimited room for unleashed innovation.
Mark Liu is the chairman of TSMC.