美国国家航空航天局(NASA)专为新时代航天重新设计的飞行器阿耳忒弥斯1号(Artemis I)火箭发射成功。这是太空探索新时代的开端。
阿耳忒弥斯号延续了悠久的传统,融合了科学、工程和创造力,努力推动人类想象的极限。
数百年来,我们总是会遥望星空寻找灵感,它所启发的突破改变了世界。1903年,莱特兄弟设计的人类第一架飞机试飞成功。1914年,第一架载人飞机飞行成功。1957年,第一颗卫星发射升空。如今,阿耳忒弥斯号、詹姆斯·韦伯空间望远镜(James Webb Telescope)、超音速飞航导弹和快递无人机,正在激励着新一代航空创新者。
无论你已经由有多大年龄,无论你在航空业从业多少年,飞行背后的科学总是会给你带来惊喜。看到一件重1,265,000磅(约573,794.35千克)、载满乘客的庞然大物顺利升空,令人觉得不可思议。这确实神奇,但需要一套复杂的数学公式才能够实现所需要的升力,让如此的庞然大物升空起飞,这限制了更多的可能性。
然而,复合材料(更坚固、但比金属更轻)和具有一系列独特特性的特种聚合物的广泛应用,将从根本上改变这个公式。
复合材料最早被用作隔热罩,帮助阿波罗(Apollo)火箭重新进入地球大气层,曾经刚刚起步的复合材料行业在过去五十年内不断壮大。现在,有数十种飞行器零部件都使用了复合材料,例如更轻、更坚固的紧固件,使飞行器从地球逃逸时完好无损,阿耳忒弥斯3号(Artemis 3)的宇航员在登陆月球时所穿的宇航服也将使用复合材料。
复合材料技术还将改变近地飞行。如果飞机的重量变得更轻会有什么影响?它们是否可以采用能效更高的新外形?它们是否能够变得更快?飞行里程更远?
今年,航空燃油成本涨至八年来最高,而且美国的《两党基础设施法案》(Bipartisan Infrastructure Law)提出了新能效标准,因此复合材料并不是一种未来主义的概念,而是一种势在必行的制造业趋势。当我们对喷气式飞机、引擎和火箭的速度与马力感到惊奇的时候,从科学的角度来看,先进材料可以令下一代飞行成为现实。
复合材料改变了航空业可能的未来。随着飞机变得越来越轻,这将对航空业产生指数级的影响。超级环路飞机/火车混合模式?为什么不呢?飞行出租车?当然可以。太阳能飞机?我们已经在进行尝试。
有许多人终生奉献给了航空业,我未来也将成为他们的一员,并为此感到自豪。波音(Boeing)的787和空中客车(Airbus)的A350对复合材料的大量应用,让我看到了复合材料行业的快速增长。
复合材料能够有无数种方式模塑和铸型。这意味着更轻的重量和更优秀的空气动力学性能,反过来可以降低燃料成本和碳足迹。目前商业航空和无人机飞行领域的进步,是我们在几年前无法想象的。
想象一下如果飞机变得成本更低、速度更快、重量更轻,能够带来的可能性。我们可以取代化石燃料驱动的卡车和轮船,改用清洁能源驱动的飞行器。我们能够减少公路交通,降低温室气体排放。我们可以使出行和旅行变得更普及。我们能够为供应链创建全球冗余,避免目前困扰我们的供应链问题重新出现。先进材料会改变旧的公式,使不可能变成可能。
航空业的未来可能就在堪萨斯城的威奇塔。今年10月,Textron Aviation宣布由于其体型更小、更灵活的飞机日益受欢迎,其位于威奇塔的经销中心将扩建18万平方英尺(约16,722.55平方米)。
研究人员与行业专家合作,对于行业的发展至关重要。在短短一年多时间里,威奇塔州立大学(Wichita State University)的美国国家航空研究院(National Institute for Aviation Research)与行业合作伙伴,联合开设了两个原型研究设施。
美国国家航空研究院正在与Spirit Aerosystems合作成立美国国家国防原型研究中心(National Defense Prototype Center),将把位于堪萨斯的业务扩大四倍,打造航天制造业市场。与此同时,Solvay正在与美国国家航空研究院合作,通过Solvay-NIAR制造创新中心(Solvay–NIAR Manufacturing Innovation Center),建造和测试飞机整机结构,包括机翼和机身,持续提高民用航空创新。
未来航空可能会出现许多我们在电影中见过的技术,但事实上复合材料和特种聚合物的进步,已经带来了我们以前从未梦想过的可能性。
我们汇集了业内最顶级的人才,通过共享资源,将使飞行变得更远、更快、更安全。(财富中文网)
本文作者卡梅洛·洛·法罗(Carmelo Lo Faro)现任Solvay公司的材料部门总裁,以及美国航空航天工业协会(Aerospace Industries Association)的执行委员会委员。
Fortune.com上发表的评论文章中表达的观点,仅代表作者本人的观点,并不代表《财富》杂志的观点和信仰。
译者:刘进龙
审校:汪皓
美国国家航空航天局(NASA)专为新时代航天重新设计的飞行器阿耳忒弥斯1号(Artemis I)火箭发射成功。这是太空探索新时代的开端。
阿耳忒弥斯号延续了悠久的传统,融合了科学、工程和创造力,努力推动人类想象的极限。
数百年来,我们总是会遥望星空寻找灵感,它所启发的突破改变了世界。1903年,莱特兄弟设计的人类第一架飞机试飞成功。1914年,第一架载人飞机飞行成功。1957年,第一颗卫星发射升空。如今,阿耳忒弥斯号、詹姆斯·韦伯空间望远镜(James Webb Telescope)、超音速飞航导弹和快递无人机,正在激励着新一代航空创新者。
无论你已经由有多大年龄,无论你在航空业从业多少年,飞行背后的科学总是会给你带来惊喜。看到一件重1,265,000磅(约573,794.35千克)、载满乘客的庞然大物顺利升空,令人觉得不可思议。这确实神奇,但需要一套复杂的数学公式才能够实现所需要的升力,让如此的庞然大物升空起飞,这限制了更多的可能性。
然而,复合材料(更坚固、但比金属更轻)和具有一系列独特特性的特种聚合物的广泛应用,将从根本上改变这个公式。
复合材料最早被用作隔热罩,帮助阿波罗(Apollo)火箭重新进入地球大气层,曾经刚刚起步的复合材料行业在过去五十年内不断壮大。现在,有数十种飞行器零部件都使用了复合材料,例如更轻、更坚固的紧固件,使飞行器从地球逃逸时完好无损,阿耳忒弥斯3号(Artemis 3)的宇航员在登陆月球时所穿的宇航服也将使用复合材料。
复合材料技术还将改变近地飞行。如果飞机的重量变得更轻会有什么影响?它们是否可以采用能效更高的新外形?它们是否能够变得更快?飞行里程更远?
今年,航空燃油成本涨至八年来最高,而且美国的《两党基础设施法案》(Bipartisan Infrastructure Law)提出了新能效标准,因此复合材料并不是一种未来主义的概念,而是一种势在必行的制造业趋势。当我们对喷气式飞机、引擎和火箭的速度与马力感到惊奇的时候,从科学的角度来看,先进材料可以令下一代飞行成为现实。
复合材料改变了航空业可能的未来。随着飞机变得越来越轻,这将对航空业产生指数级的影响。超级环路飞机/火车混合模式?为什么不呢?飞行出租车?当然可以。太阳能飞机?我们已经在进行尝试。
有许多人终生奉献给了航空业,我未来也将成为他们的一员,并为此感到自豪。波音(Boeing)的787和空中客车(Airbus)的A350对复合材料的大量应用,让我看到了复合材料行业的快速增长。
复合材料能够有无数种方式模塑和铸型。这意味着更轻的重量和更优秀的空气动力学性能,反过来可以降低燃料成本和碳足迹。目前商业航空和无人机飞行领域的进步,是我们在几年前无法想象的。
想象一下如果飞机变得成本更低、速度更快、重量更轻,能够带来的可能性。我们可以取代化石燃料驱动的卡车和轮船,改用清洁能源驱动的飞行器。我们能够减少公路交通,降低温室气体排放。我们可以使出行和旅行变得更普及。我们能够为供应链创建全球冗余,避免目前困扰我们的供应链问题重新出现。先进材料会改变旧的公式,使不可能变成可能。
航空业的未来可能就在堪萨斯城的威奇塔。今年10月,Textron Aviation宣布由于其体型更小、更灵活的飞机日益受欢迎,其位于威奇塔的经销中心将扩建18万平方英尺(约16,722.55平方米)。
研究人员与行业专家合作,对于行业的发展至关重要。在短短一年多时间里,威奇塔州立大学(Wichita State University)的美国国家航空研究院(National Institute for Aviation Research)与行业合作伙伴,联合开设了两个原型研究设施。
美国国家航空研究院正在与Spirit Aerosystems合作成立美国国家国防原型研究中心(National Defense Prototype Center),将把位于堪萨斯的业务扩大四倍,打造航天制造业市场。与此同时,Solvay正在与美国国家航空研究院合作,通过Solvay-NIAR制造创新中心(Solvay–NIAR Manufacturing Innovation Center),建造和测试飞机整机结构,包括机翼和机身,持续提高民用航空创新。
未来航空可能会出现许多我们在电影中见过的技术,但事实上复合材料和特种聚合物的进步,已经带来了我们以前从未梦想过的可能性。
我们汇集了业内最顶级的人才,通过共享资源,将使飞行变得更远、更快、更安全。(财富中文网)
本文作者卡梅洛·洛·法罗(Carmelo Lo Faro)现任Solvay公司的材料部门总裁,以及美国航空航天工业协会(Aerospace Industries Association)的执行委员会委员。
Fortune.com上发表的评论文章中表达的观点,仅代表作者本人的观点,并不代表《财富》杂志的观点和信仰。
译者:刘进龙
审校:汪皓
The Artemis I rocket, NASA’s redesigned aircraft built for a new age of spaceflight, has successfully taken off. It’s the beginning of a new era for space exploration.
Artemis follows a long tradition of bringing science, engineering, and creativity together to push the limits of what mankind believes is possible.
For hundreds of years, we’ve looked to the skies for inspiration–and it has led to world-changing breakthroughs. The Wright brothers first flew in 1903. The first passenger aircraft flew in 1914. The first satellite was launched in 1957. Today, Artemis, the James Webb Telescope, hypersonic maneuverable missiles, and delivery drones are inspiring a new generation of aviation innovators.
No matter how old you get or how many years you work in the aviation industry, you never stop marveling at the science behind flight. There’s something magical about seeing an object weighing 1,265,000 pounds and loaded with passengers fly through the air. Magical as that may be, the mathematical equations needed to generate enough lift for that much weight limit what is possible.
However, the widespread adoption of composite materials (made to be much stronger and considerably lighter than metals) and specialty polymers with a unique set of properties fundamentally changes the equation.
First used on the heat shield that helped Apollo missions re-enter the Earth’s atmosphere, the previously fledgling composites industry has expanded widely over the past five decades. Composites now make up dozens of components ranging from the lighter weight, stronger joints that hold the spacecraft together as it hurdles away from Earth to the space suits the astronauts of Artemis 3 will wear when they set foot on the moon.
These same technologies are also poised to change flight back here on Earth. What if aircraft weighed substantially less than they do now? Could they take on new shapes that are more energy efficient? Could they go faster? Travel further?
With aviation fuel costs hitting an eight-year record high this year and new efficiency standards as part of the Bipartisan Infrastructure Law, composite materials aren’t some futuristic concept–they have become a manufacturing imperative. As much as we marvel at the speed and power of jets, engines and rockets, from a scientific perspective, advanced materials are what is unlocking the next generation of flight.
Composite materials have transformed what’s possible in aviation. As aircraft get incrementally lighter and lighter, impacts on the industry become exponential. A hyperloop airplane/train hybrid? Why not? Flying taxis? Absolutely. Solar-powered aircraft? We’ve already done it.
As someone who has spent his entire career in the aviation industry, I’m proud to be part of this future. I’ve seen the rapid growth of composites through mass implementation on the Boeing 787 and the Airbus A350.
Composite materials can be molded and shaped in infinite ways. That means less weight and better aerodynamics, which in turn drives lower fuel costs and a smaller carbon footprint. We are now driving advances in commercial aviation and unmanned flight that were unimaginable only a few years ago.
Imagine the possibilities if aircraft were cheaper, faster, and lighter. We could replace fossil-fuel-powered trucks and ships with flying machines powered by clean energy. We could reduce traffic on the roads and lower greenhouse gas emissions. We could make travel and tourism more accessible. We could create global redundancies in our supply chains, preventing a repeat of the supply issues that have been plaguing us. Advanced materials change the equation, allowing the impossible to become possible.
The future of aviation can be found in Wichita, Kansas. In October, Textron Aviation announced a new 180,000-square-foot expansion of its Wichita distribution center, citing the increased popularity of its smaller, nimbler aircraft.
Partnerships between researchers and industry experts are critical for the growth of the industry. Within just over a year, Wichita State University’s National Institute for Aviation Research (NIAR) has opened two joint prototyping facilities with industry partners.
NIAR is partnering with Spirit Aerosystems to launch the National Defense Prototype Center, which will expand Kansas’s foothold into the space manufacturing market. At the same time, Solvay is working with NIAR to push domestic aviation innovation to new heights at the Solvay–NIAR Manufacturing Innovation Center, building and testing entire aircraft structures, including wings and fuselages.
The future of flight may well involve some of the technologies we’ve seen in the movies, but the reality is that the advancement of composites and specialty polymers has unlocked possibilities we hadn’t even dreamt of yet.
By bringing together the brightest minds in the industry with shared resources, we can go further, faster, and safer than we ever have before.
Carmelo Lo Faro is the president of the materials segment at Solvay and an executive committee member of the Aerospace Industries Association.
The opinions expressed in Fortune.com commentary pieces are solely the views of their authors and do not necessarily reflect the opinions and beliefs of Fortune.