日本超市货架上的小西红柿看上去是正常的水果,但实际上它们都是遗传学领域的开拓者。2021年年末,日本公司Sanatech Seed开始出售经过基因改造的特种西红柿,这些西红柿富含伽玛-氨基丁酸(GABA),是在人脑里自然存在的一种化合物。伽玛-氨基丁酸有助于减缓压力,被宣传为具有治疗高血压和失眠的效果。人们不需要以膳食补充剂的形式摄入伽玛-氨基丁酸,只需要将其添加到沙拉食材当中。
Sanatech使用了一种革命性的基因编辑技术CRISPR,改造西红柿基因组,以减少会自然分解伽玛-氨基丁酸的酶的数量。已经诞生十年的CRISPR技术,被普遍认为是人类历史上最重要的技术突破之一。它让编辑遗传物质变得更容易、成本更低。
经过CRISPR改造的食物即将大规模涌入市场,西红柿只是其中之一。得益于CRISPR技术,没有苦味的羽衣甘蓝、耐旱的家畜和大米、抗病毒能力更强的香蕉等,都开始广泛饲养和种植,并被快速摆上了货架。这项技术正在快速进化,其发展速度甚至超过了监管速度。许多国家对CRISPR产品制定了快速审批流程,因为与以前的基因改造方法相比,CRISPR技术支持研究人员大幅缩短农产品从实验室到田地再到货架的速度。
如何标记和说明CRISPR产品同样存在争议。这些产品通常不需要引入来自其他有机物的遗传物质,而是复制或者改变现有基因。然而,基因改造的速度和强度令一些科学家担心,CRISPR有可能像是潘多拉魔盒,如果任其自由发展,在全世界难以抵御粮食系统受到的冲击时,就会产生意想不到的后果。CRISPR不会消失,但问题是我们是否做好了控制风险的准备?
CRISPR是成簇的、规律间隔的短回文重复序列(Clustered Regularly Interspaced Short Palindromic Repeats)的简称,它会重新改造古老细菌的防御机制,简化DNA和RNA编辑。CRISPR支持研究人员像在电脑上剪贴复制单词一样进行基因编辑。这是一种过度简化的过程,因为CRISPR不需要具备遗传学知识和实验室基础设施,但与之前的基因改造方式相比,CRISPR明显速度更快、成本更低并且更灵活。
CRISPR的支持者们认为,在不插入外来DNA的情况下编辑基因所存在的固有风险,远低于不同物种间转移DNA的传统基因改造方法所带来的风险。因此,他们认为,CRISPR的机制类似于传统的交叉杂交农业方法。两者的关键区别是,CRISPR可以用不到一年时间,完成之前需要十年甚至更长时间才能够完成的任务,而且成本更低。将生物研究工具与机器学习相结合,还可以轻松缩短时间。
CRISPR作物既给我们创造了前所未有的机遇,也带来了实实在在的风险。一方面,CRISPR能够在农业生物科技领域重新实现权力平衡。该技术成本相对较低,并且容易学习。通过CRISPR技术可实现的基因改造类型,使各个国家和地区可以根据区域和国家的情况与口味,对农作物和动物进行改造,从而取得对未来粮食的更大掌控权,不必向跨国农业综合企业支付巨额费用购买种子和农药。
例如,印度等国能够利用CRISPR重新掌控本国在粮食方面的命运,培育可以满足本国农民需求的新本地品种,并申请专利。在印度,西红柿和芥菜这两种在本地经过CRISPR技术改造的常见农作物,已经开始大范围种植。
相比研究现有基因改造作物的安全性,随着大量CRISPR相关知识被公开,科学家们拥有更多自由研究新培育品种。这有望打破种子和农药方面的“封锁”。这种封锁导致全世界的农民很容易受制于占据垄断地位的全球农业科技巨头,比如孟山都[Monsanto,目前已经被拜耳(Bayer)收购]和先正达(Syngenta)等。绝大多数能够用于农作物种植的培育物种的专利都归这些垄断集团所有。
另一方面,正如我们在《无人驾驶汽车中的司机》(The Driver in the Driverless Car)一书中所解释的那样,CRISPR带来了已知的风险和未知的危险。研究人员可以跑赢大自然的进化速度,就如同他们能够迅速开发出应对新冠病毒的mRNA转基因技术一样,但可能产生残酷、迅猛的意外后果。例如,CRISPR作物可能引发新过敏症,或者一种设计为可防虫害的培育物种可能导致生态系统崩溃,影响物种或者导致物种灭绝,并且阻碍农作物授粉。没有经过恰当检测的CRISPR培育物种,可能很容易受到病虫害影响,这可能比它们应该解决的问题更严重。在生物学中,环境引入难以逆转,需要付出沉重的代价,比如大面积农作物受损等。一种经过基因改造后存在有害特性的物种,可能逃逸到野外,淘汰一种植物的其他变种,或者摧毁一整个昆虫物种。
在美国,经过CRISPR基因编辑且不含外来遗传物质的食品,与使用传统杂交技术培育的品种,接受同样的监管。这意味着消费者可能并不清楚哪些食物经过基因改造,除非食品公司选择在零售时添加标签或者进行区分。欧盟(European Union)采取了更谨慎的措施,出台了要求对CRISPR作物加强监管的规定。这极其重要,因为一旦CRISPR作物进入野外,几乎不可能将其收回,除非科学家们首先设计一种遗传学上的切断开关。虽然这方面的研究目前尚未成功,但存在成功的可能性,例如为了根除疟疾,引入具有寄生性疟原虫抗性的蚊子的“基因驱动”方案中就包含了这种措施。
基于上述原因,虽然该项技术能够快速带来回报,但各国政府需要谨慎应对,以减少其风险,并在发现任何问题迹象后快速采取响应措施。比如创建巧妙的监管结构,确保在我们争相提高粮食产量的同时,不会对脆弱的农业生态系统造成不可挽回的伤害。
印度政府已经开始朝着这个方向采取措施。印度政府制定了加快审批经过CRISPR基因编辑的作物的基础设施和审批流程,并创建了知识共享机制,分享通过开源方法使用CRISPR技术创造新培育物种的知识。印度生物技术部(Department of Biotechnology)的部长拉杰什·戈卡莱表示,印度政府还将该类农作物的审批和许可流程分为两部分,使其更容易评估仅编辑了原始染色体的CRISPR作物,而不是包含外来遗传物质的作物。
作为20世纪最强大的技术进步之一,CRISPR为重新恢复全球粮食领域的权力平衡创造了绝佳机会,可以通过提高粮食产业的生产力和弹性来提升粮食供应抵御未来冲击的能力。尽管如此,如果对CRISPR工艺和产品监管不足,可能引发生态系统崩溃甚至导致物种快速灭绝,因为粮食同水一样关乎人类生死存亡,都是最关键的资源。民营行业能够在这方面发挥作用,创建管理CRISPR作物的故障保护工具。政府应该将CRISPR视为一种出色但仍然有待验证的新技术。(财富中文网)
本文作者维韦克·瓦德瓦(Vivek Wadhwa)是一位学者、企业家和作家。亚历克斯·萨尔克弗(Alex Salkever)为科技公司顾问和作家。他们的作品《从增量式创新到指数级创新》(From Incremental to Exponential)解释了大公司如何看待未来和如何重新思考创新。
Fortune.com上发表的评论文章中表达的观点,仅代表作者本人的观点,不代表《财富》杂志的观点和立场。
翻译:刘进龙
审校:汪皓
日本超市货架上的小西红柿看上去是正常的水果,但实际上它们都是遗传学领域的开拓者。2021年年末,日本公司Sanatech Seed开始出售经过基因改造的特种西红柿,这些西红柿富含伽玛-氨基丁酸(GABA),是在人脑里自然存在的一种化合物。伽玛-氨基丁酸有助于减缓压力,被宣传为具有治疗高血压和失眠的效果。人们不需要以膳食补充剂的形式摄入伽玛-氨基丁酸,只需要将其添加到沙拉食材当中。
Sanatech使用了一种革命性的基因编辑技术CRISPR,改造西红柿基因组,以减少会自然分解伽玛-氨基丁酸的酶的数量。已经诞生十年的CRISPR技术,被普遍认为是人类历史上最重要的技术突破之一。它让编辑遗传物质变得更容易、成本更低。
经过CRISPR改造的食物即将大规模涌入市场,西红柿只是其中之一。得益于CRISPR技术,没有苦味的羽衣甘蓝、耐旱的家畜和大米、抗病毒能力更强的香蕉等,都开始广泛饲养和种植,并被快速摆上了货架。这项技术正在快速进化,其发展速度甚至超过了监管速度。许多国家对CRISPR产品制定了快速审批流程,因为与以前的基因改造方法相比,CRISPR技术支持研究人员大幅缩短农产品从实验室到田地再到货架的速度。
如何标记和说明CRISPR产品同样存在争议。这些产品通常不需要引入来自其他有机物的遗传物质,而是复制或者改变现有基因。然而,基因改造的速度和强度令一些科学家担心,CRISPR有可能像是潘多拉魔盒,如果任其自由发展,在全世界难以抵御粮食系统受到的冲击时,就会产生意想不到的后果。CRISPR不会消失,但问题是我们是否做好了控制风险的准备?
CRISPR是成簇的、规律间隔的短回文重复序列(Clustered Regularly Interspaced Short Palindromic Repeats)的简称,它会重新改造古老细菌的防御机制,简化DNA和RNA编辑。CRISPR支持研究人员像在电脑上剪贴复制单词一样进行基因编辑。这是一种过度简化的过程,因为CRISPR不需要具备遗传学知识和实验室基础设施,但与之前的基因改造方式相比,CRISPR明显速度更快、成本更低并且更灵活。
CRISPR的支持者们认为,在不插入外来DNA的情况下编辑基因所存在的固有风险,远低于不同物种间转移DNA的传统基因改造方法所带来的风险。因此,他们认为,CRISPR的机制类似于传统的交叉杂交农业方法。两者的关键区别是,CRISPR可以用不到一年时间,完成之前需要十年甚至更长时间才能够完成的任务,而且成本更低。将生物研究工具与机器学习相结合,还可以轻松缩短时间。
CRISPR作物既给我们创造了前所未有的机遇,也带来了实实在在的风险。一方面,CRISPR能够在农业生物科技领域重新实现权力平衡。该技术成本相对较低,并且容易学习。通过CRISPR技术可实现的基因改造类型,使各个国家和地区可以根据区域和国家的情况与口味,对农作物和动物进行改造,从而取得对未来粮食的更大掌控权,不必向跨国农业综合企业支付巨额费用购买种子和农药。
例如,印度等国能够利用CRISPR重新掌控本国在粮食方面的命运,培育可以满足本国农民需求的新本地品种,并申请专利。在印度,西红柿和芥菜这两种在本地经过CRISPR技术改造的常见农作物,已经开始大范围种植。
相比研究现有基因改造作物的安全性,随着大量CRISPR相关知识被公开,科学家们拥有更多自由研究新培育品种。这有望打破种子和农药方面的“封锁”。这种封锁导致全世界的农民很容易受制于占据垄断地位的全球农业科技巨头,比如孟山都[Monsanto,目前已经被拜耳(Bayer)收购]和先正达(Syngenta)等。绝大多数能够用于农作物种植的培育物种的专利都归这些垄断集团所有。
另一方面,正如我们在《无人驾驶汽车中的司机》(The Driver in the Driverless Car)一书中所解释的那样,CRISPR带来了已知的风险和未知的危险。研究人员可以跑赢大自然的进化速度,就如同他们能够迅速开发出应对新冠病毒的mRNA转基因技术一样,但可能产生残酷、迅猛的意外后果。例如,CRISPR作物可能引发新过敏症,或者一种设计为可防虫害的培育物种可能导致生态系统崩溃,影响物种或者导致物种灭绝,并且阻碍农作物授粉。没有经过恰当检测的CRISPR培育物种,可能很容易受到病虫害影响,这可能比它们应该解决的问题更严重。在生物学中,环境引入难以逆转,需要付出沉重的代价,比如大面积农作物受损等。一种经过基因改造后存在有害特性的物种,可能逃逸到野外,淘汰一种植物的其他变种,或者摧毁一整个昆虫物种。
在美国,经过CRISPR基因编辑且不含外来遗传物质的食品,与使用传统杂交技术培育的品种,接受同样的监管。这意味着消费者可能并不清楚哪些食物经过基因改造,除非食品公司选择在零售时添加标签或者进行区分。欧盟(European Union)采取了更谨慎的措施,出台了要求对CRISPR作物加强监管的规定。这极其重要,因为一旦CRISPR作物进入野外,几乎不可能将其收回,除非科学家们首先设计一种遗传学上的切断开关。虽然这方面的研究目前尚未成功,但存在成功的可能性,例如为了根除疟疾,引入具有寄生性疟原虫抗性的蚊子的“基因驱动”方案中就包含了这种措施。
基于上述原因,虽然该项技术能够快速带来回报,但各国政府需要谨慎应对,以减少其风险,并在发现任何问题迹象后快速采取响应措施。比如创建巧妙的监管结构,确保在我们争相提高粮食产量的同时,不会对脆弱的农业生态系统造成不可挽回的伤害。
印度政府已经开始朝着这个方向采取措施。印度政府制定了加快审批经过CRISPR基因编辑的作物的基础设施和审批流程,并创建了知识共享机制,分享通过开源方法使用CRISPR技术创造新培育物种的知识。印度生物技术部(Department of Biotechnology)的部长拉杰什·戈卡莱表示,印度政府还将该类农作物的审批和许可流程分为两部分,使其更容易评估仅编辑了原始染色体的CRISPR作物,而不是包含外来遗传物质的作物。
作为20世纪最强大的技术进步之一,CRISPR为重新恢复全球粮食领域的权力平衡创造了绝佳机会,可以通过提高粮食产业的生产力和弹性来提升粮食供应抵御未来冲击的能力。尽管如此,如果对CRISPR工艺和产品监管不足,可能引发生态系统崩溃甚至导致物种快速灭绝,因为粮食同水一样关乎人类生死存亡,都是最关键的资源。民营行业能够在这方面发挥作用,创建管理CRISPR作物的故障保护工具。政府应该将CRISPR视为一种出色但仍然有待验证的新技术。(财富中文网)
本文作者维韦克·瓦德瓦(Vivek Wadhwa)是一位学者、企业家和作家。亚历克斯·萨尔克弗(Alex Salkever)为科技公司顾问和作家。他们的作品《从增量式创新到指数级创新》(From Incremental to Exponential)解释了大公司如何看待未来和如何重新思考创新。
Fortune.com上发表的评论文章中表达的观点,仅代表作者本人的观点,不代表《财富》杂志的观点和立场。
翻译:刘进龙
审校:汪皓
The small tomatoes on shelves of supermarkets in Japan may look like normal fruit, but they are actually genetic pioneers. In late 2021, Japanese company Sanatech Seed began selling special tomatoes that had been genetically modified to produce high levels of gamma-aminobutyric acid (GABA), a compound naturally found in the brain. GABA has been linked to stress reduction and is touted as a treatment for high blood pressure and insomnia. Rather than take GABA as a supplement, diners can simply incorporate it into their salads.
Sanatech used a revolutionary gene-editing technology called CRISPR to modify a tomato genome to reduce the production of enzymes that naturally break down GABA. Now a decade old, CRISPR is widely acknowledged as one of the most important technological breakthroughs in human history. It makes editing genetic material far simpler and more affordable.
The tomatoes are part of a pending onslaught of CRISPR-modified foodstuffs hitting the markets. Kale that lacks the bitter aftertaste, drought-resistant cattle and rice, and bananas that can better withstand viruses are all heading toward fields and shelves at a breakneck pace because of CRISPR. The technology is moving quickly, at times outpacing regulatory efforts. Many nations are setting up expedited approval processes for CRISPR products because the technique allows researchers to go from lab to field to shelf many times faster than by previous genetic-modification methods.
How to label and describe CRISPR products is also controversial. They often entail no introduction of genetic material from other organisms, instead replicating or switching existing genes. However, the speed and power of the modifications have some scientists concerned that CRISPR may have the potential to be a Pandora’s Box of unintended consequences let loose on the fields just when the world can poorly withstand shocks to the food system. CRISPR is here to stay–but are we ready to manage the risks?
Short for Clustered Regularly Interspaced Short Palindromic Repeats, CRISPR repurposes an ancient bacterial defense mechanism to simplify the editing of DNA and RNA. CRISPR lets researchers edit genes much as writers cut and paste words on a computer. That is an oversimplification, as CRISPR does require knowledge of genetics as well as laboratory infrastructure–but CRISPR is significantly faster, cheaper, and more flexible than previous types of genetic modifications.
CRISPR supporters claim that editing genes without inserting foreign DNA makes it less inherently risky than older forms of genetic engineering that involved moving DNA from one species to another. Thus, they say, CRISPR works just like traditional cross-hybridization agriculture methods. The key difference is that CRISPR methods can accomplish in a year or less what formerly required a decade or longer, and at a lower cost. That timetable could easily accelerate as tools for biological research combine with machine learning.
CRISPR crops present the world with both unprecedented opportunities and genuine risks. On the one hand, CRISPR can reset the balance of power in agricultural biotech. It is relatively cheap and relatively easy to learn. The types of modifications possible in CRISPR might allow countries and regions to take greater control of their food futures by modifying crops and animals specifically to try to meet regional and national conditions or tastes rather than pay steep fees to global agribusiness concerns for seeds and a steady stream of pesticides.
A country such as India, for example, might be able to use CRISPR to regain ownership of its food fate, producing and patenting new indigenous varieties that may support the needs of its farmers. There, locally engineered CRISPR-modified crops are already in the works for two popular crops, tomatoes and mustard greens.
With much CRISPR knowledge being public, scientists have far more freedom to research new cultivars than they do to research the safety of existing genetically modified crops. And this could alleviate the seed and pesticide “lock-in” that has left farmers around the world vulnerable to the oligopoly of global agtech giants such as Monsanto (now Bayer) and Syngenta who have patents on a significant percentage of common cultivars used for crops.
On the other hand, as we explained in The Driver in the Driverless Car, CRISPR poses both known risks and unknown hazards. Researchers can–as they did in rapidly developing mRNA gene-transfer technology against the COVID-19 virus–outpace Mother Nature, but unintended consequences can be brutal and swift. For example, a CRISPR crop might trigger new allergies, or a cultivar designed to combat an insect pest might cause ecosystem collapse, affecting or extinguishing species and preventing crop pollination. Improperly tested CRISPR cultivars may also incorporate vulnerabilities to diseases and pests that outstrip the problems they attempt to fix. In biology, environmental introductions are difficult to reverse without significant costs, such as mass crop destruction. A modified variety with harmful traits can escape into the wild and out-compete other varieties of a plant or destroy an entire insect species.
In the U.S., CRISPR-edited foods that do not contain alien genetic material are regulated just like cultivars generated by traditional hybridization. This means consumers may not know which foodstuffs have been modified unless the food company elects to create some labeling or differentiation at the retail level. The European Union has taken a more cautious approach, instituting regulations that subject CRISPR crops to greater scrutiny. This is important, because, once a CRISPR crop is in the wild, it is nearly impossible to put it back in the bottle unless scientists have first engineered a genetic kill switch–something that is not currently happening but is possible, as evidenced by the inclusion of this measure in so-called “gene drive” proposals to fight malaria by introducing mosquitoes resistant to the parasitic malaria protozoa.
For all of these reasons, although the technology promises quick rewards, governments need to proceed cautiously to mitigate its risks and respond quickly to signs of problems. This includes creating a smart regulatory structure to ensure that in a mad dash to boost food production we do not do irrevocable harm to our fragile agriculture ecosystems.
The Indian government has already taken steps in this direction. It has set up an infrastructure and review process for faster reviews of CRISPR-edited crops and created mechanisms for sharing knowledge on creating new CRISPR cultivars through open-source methods. It has also bifurcated its review and permit process, making it far easier, according to Rajesh Gokhale, the secretary of the Department of Biotechnology, to assess CRISPR crops that only edit the original genome rather than incorporate foreign genetic material.
As one of the most powerful technological developments of the past century, CRISPR presents a remarkable opportunity for the world to reset the global balance of power in food and to futureproof the food supply by making it more productive and more resilient. That said, failing to scrutinize CRISPR processes and products could be a recipe for ecosystem collapse and–considering that food is truly life and the most critical resource in the world alongside water–rapid extinction. Private industry could play a role in this regard, creating failsafe tools for managing CRISPR crops. And governments should consider CRISPR what it is: a novel, remarkable, but still unproven technology.
Vivek Wadhwa is an academic, entrepreneur, and author. Alex Salkever is an advisor to tech companies and author. Their book, From Incremental to Exponential, explains how large companies can see the future and rethink innovation.
The opinions expressed in Fortune.com commentary pieces are solely the views of their authors and do not necessarily reflect the opinions and beliefs of Fortune.