竞争优势是各行各业成功的必要条件,这一点在制药行业尤为明显。药企投入数亿美元和大量时间,研究如何抢在竞争对手之前完成临床试验和药品上市。
但它们不会单打独斗。
在这些顶级药企和小型生物科技公司背后,有Lifescience Dynamics等咨询机构提供来自数十名学者和分析师的第三方信誉保证,而且更重要的是,它们提供了有价值的工具,可以为药企带来深刻的见解和建议,以加速产品研发和更快获得美国食品药品管理局(FDA)的批准。
Lifescience Dynamics公司高级顾问侯赛因·贾法尔解释称:“制药是一个数据驱动的行业。为了向我们的客户提供咨询,我们需要获取尽可能多的数据。”他是该公司采用人工智能的主要负责人。
Lifescience Dynamics的实力源于它的五款主要科技产品,这些产品整合了人工智能元素,包括机器学习、大语言模型和生成式AI等,可以计算大数据集、汇总信息和提供明智的建议。
一款新药从发现、开发到最终上市,平均需要8至12年时间。Lifescience Dynamics创始人兼总裁拉法特·拉赫玛尼解释称,在这个过程中,制药团队要做出许多决策,这些决策通常是基于“相互矛盾、有限或零星的数据”。为了最大程度降低风险,药企必须向第三方研究机构寻求帮助,以验证它们的数据和决策。因此,拉赫玛尼才会在二十年前创建了Lifescience Dynamics。他之前曾任职于礼来(Eli Lilly)及其他医疗保健咨询机构。
在过去几年人工智能迎来飞速发展之前,他的团队的许多任务依旧要靠人工来完成,每项任务每年都要投入数千个小时的人力。该公司的130多家客户,其中大多数来自全球排名前20的制药公司,因此这是一项艰巨的任务,但也存在更多出现人为错误的机会,对于受到严格监管的制药行业来说,这是一个重大挑战。
现在,在人工智能的协助下,有些任务只需要10分钟就能完成,而且对这些任务的信心通常高达100%。虽然拉赫玛尼一直认为Lifescience Dynamics是一家谙熟技术的公司,但这种心态真正的好处体现在其对人工智能的应用上。
贾法尔发现受影响最大的业务领域或许并不引人注目,却给客户和他自己的团队创造了无与伦比的价值,其中包括数据收集、数据分析和数据可视化等。跟踪临床试验对于制药行业而言至关重要,尤其是竞争对手的试验进展。贾法尔解释称,他的团队以前会使用“庞大的”Excel数据表,团队成员需要手动录入数据,阅读在线最新内容,然后更新数据表。2021年,他们推出了一款机器学习模型,可自动从clinicaltrials.gov等注册网站抓取信息,并持续更新。他说道,实时数据自动化是该公司优化流程和提高效率以满足客户预期的关键。
此外,他负责的一个项目会从重要医疗行业会议上,抓取有关研讨会和药物更新的有价值的信息。许多活动的参会人数超过70,000人,有时候会有5,000多场研讨会。在使用人工智能之前,汇总和分析数据是一项艰巨的任务;现在,Lifescience Dynamics的模型会自动提取摘要和细节,甚至可以总结和推荐值得参加的会议。
Lifescience Dynamics收集的见解都存储于客户的门户网站上,客户可以随时登陆以全面了解他们的竞争情报项目、临床试验数据和药物数据。贾法尔解释称,公司目前正在基于这些数据开发人工智能模型,使用自然语言处理客户查询,并更好地理解结果。它不仅能够提高客户-顾问关系的透明度,还能让Lifescience团队免于应对客户提出的耗时漫长、占用大量资源的问题。
最近,贾法尔和他的团队注意到生成式人工智能所带来的好处,特别开发了在线调查,使独立医生可以参与调查,发表对某些药物的评论和建议。作为同行审议过程的一个重要组成部分,药企会获取医生对于潜在药物现实的、面向患者的意见。对贾法尔而言,生成式人工智能和大语言模型可帮助他创建支持医生在线讨论的调查模板,并识别适合特定调查的专家。
贾法尔表示:“这项工作以前完全由人工完成,而且我们只能依靠自己的经验和专业知识。但通过使用人工智能,我们可以向它提供我们所期望的讨论指南的背景,然后它就会生成一个非常有用的模板,帮我们完成最终指南80%的工作。”
剩余20%的工作由该团队手动完成。
虽然人工智能让公司大获成功,但贾法尔和拉赫玛尼知道未来还有更大的挑战。贾法尔计划创建适用于其所在领域的人工智能模型。虽然Lifescience Dynamics可以从其历史数据中提取信息,但真正的价值源于业内的更多共享数据。他解释称,很可惜,对医疗保健行业的严格监管和患者信息的保密性,以及医疗行业的竞争之激烈,意味着药企出于多种原因不愿意公开自己的数据。一种令人担忧的情况是,公司继续独立开发,而不是在全球共享集体数据,以便于人工智能可以快速学习。与其他领域相比,制药行业可分享的数据确实更少。
拉赫玛尼预测,制药行业有关人工智能的争论可能需要更长时间才能尘埃落定。他表示,尽管人工智能的出现令人兴奋和激动,但旧的承诺和不支持这项技术的领导者依旧存在。但他对人工智能的未来充满了信心,他认为人工智能是能够帮助整个行业成功的工具。
拉赫玛尼说道:“我能理解为什么他们不愿意使用人工智能,但这确实限制了人工智能的应用。我们的客户雇佣我们,希望我们能在最短的时间内以最低的成本,为他们提供见解,并将见解转变成远见。这些人工智能工具能最大限度发挥数据的价值,让数据变得生动起来。”(财富中文网)
翻译:刘进龙
审校:汪皓
竞争优势是各行各业成功的必要条件,这一点在制药行业尤为明显。药企投入数亿美元和大量时间,研究如何抢在竞争对手之前完成临床试验和药品上市。
但它们不会单打独斗。
在这些顶级药企和小型生物科技公司背后,有Lifescience Dynamics等咨询机构提供来自数十名学者和分析师的第三方信誉保证,而且更重要的是,它们提供了有价值的工具,可以为药企带来深刻的见解和建议,以加速产品研发和更快获得美国食品药品管理局(FDA)的批准。
Lifescience Dynamics公司高级顾问侯赛因·贾法尔解释称:“制药是一个数据驱动的行业。为了向我们的客户提供咨询,我们需要获取尽可能多的数据。”他是该公司采用人工智能的主要负责人。
Lifescience Dynamics的实力源于它的五款主要科技产品,这些产品整合了人工智能元素,包括机器学习、大语言模型和生成式AI等,可以计算大数据集、汇总信息和提供明智的建议。
一款新药从发现、开发到最终上市,平均需要8至12年时间。Lifescience Dynamics创始人兼总裁拉法特·拉赫玛尼解释称,在这个过程中,制药团队要做出许多决策,这些决策通常是基于“相互矛盾、有限或零星的数据”。为了最大程度降低风险,药企必须向第三方研究机构寻求帮助,以验证它们的数据和决策。因此,拉赫玛尼才会在二十年前创建了Lifescience Dynamics。他之前曾任职于礼来(Eli Lilly)及其他医疗保健咨询机构。
在过去几年人工智能迎来飞速发展之前,他的团队的许多任务依旧要靠人工来完成,每项任务每年都要投入数千个小时的人力。该公司的130多家客户,其中大多数来自全球排名前20的制药公司,因此这是一项艰巨的任务,但也存在更多出现人为错误的机会,对于受到严格监管的制药行业来说,这是一个重大挑战。
现在,在人工智能的协助下,有些任务只需要10分钟就能完成,而且对这些任务的信心通常高达100%。虽然拉赫玛尼一直认为Lifescience Dynamics是一家谙熟技术的公司,但这种心态真正的好处体现在其对人工智能的应用上。
贾法尔发现受影响最大的业务领域或许并不引人注目,却给客户和他自己的团队创造了无与伦比的价值,其中包括数据收集、数据分析和数据可视化等。跟踪临床试验对于制药行业而言至关重要,尤其是竞争对手的试验进展。贾法尔解释称,他的团队以前会使用“庞大的”Excel数据表,团队成员需要手动录入数据,阅读在线最新内容,然后更新数据表。2021年,他们推出了一款机器学习模型,可自动从clinicaltrials.gov等注册网站抓取信息,并持续更新。他说道,实时数据自动化是该公司优化流程和提高效率以满足客户预期的关键。
此外,他负责的一个项目会从重要医疗行业会议上,抓取有关研讨会和药物更新的有价值的信息。许多活动的参会人数超过70,000人,有时候会有5,000多场研讨会。在使用人工智能之前,汇总和分析数据是一项艰巨的任务;现在,Lifescience Dynamics的模型会自动提取摘要和细节,甚至可以总结和推荐值得参加的会议。
Lifescience Dynamics收集的见解都存储于客户的门户网站上,客户可以随时登陆以全面了解他们的竞争情报项目、临床试验数据和药物数据。贾法尔解释称,公司目前正在基于这些数据开发人工智能模型,使用自然语言处理客户查询,并更好地理解结果。它不仅能够提高客户-顾问关系的透明度,还能让Lifescience团队免于应对客户提出的耗时漫长、占用大量资源的问题。
最近,贾法尔和他的团队注意到生成式人工智能所带来的好处,特别开发了在线调查,使独立医生可以参与调查,发表对某些药物的评论和建议。作为同行审议过程的一个重要组成部分,药企会获取医生对于潜在药物现实的、面向患者的意见。对贾法尔而言,生成式人工智能和大语言模型可帮助他创建支持医生在线讨论的调查模板,并识别适合特定调查的专家。
贾法尔表示:“这项工作以前完全由人工完成,而且我们只能依靠自己的经验和专业知识。但通过使用人工智能,我们可以向它提供我们所期望的讨论指南的背景,然后它就会生成一个非常有用的模板,帮我们完成最终指南80%的工作。”
剩余20%的工作由该团队手动完成。
虽然人工智能让公司大获成功,但贾法尔和拉赫玛尼知道未来还有更大的挑战。贾法尔计划创建适用于其所在领域的人工智能模型。虽然Lifescience Dynamics可以从其历史数据中提取信息,但真正的价值源于业内的更多共享数据。他解释称,很可惜,对医疗保健行业的严格监管和患者信息的保密性,以及医疗行业的竞争之激烈,意味着药企出于多种原因不愿意公开自己的数据。一种令人担忧的情况是,公司继续独立开发,而不是在全球共享集体数据,以便于人工智能可以快速学习。与其他领域相比,制药行业可分享的数据确实更少。
拉赫玛尼预测,制药行业有关人工智能的争论可能需要更长时间才能尘埃落定。他表示,尽管人工智能的出现令人兴奋和激动,但旧的承诺和不支持这项技术的领导者依旧存在。但他对人工智能的未来充满了信心,他认为人工智能是能够帮助整个行业成功的工具。
拉赫玛尼说道:“我能理解为什么他们不愿意使用人工智能,但这确实限制了人工智能的应用。我们的客户雇佣我们,希望我们能在最短的时间内以最低的成本,为他们提供见解,并将见解转变成远见。这些人工智能工具能最大限度发挥数据的价值,让数据变得生动起来。”(财富中文网)
翻译:刘进龙
审校:汪皓
A competitive advantage is necessary for success across industries, but maybe nowhere so much as pharmaceuticals, where companies spend millions of dollars and thousands of hours researching how to get their developments through clinical trials and onto the market before their competitors.
But they don’t do it alone.
Behind the top pharmaceutical companies, as well as smaller biotech firms, consulting agencies like Lifescience Dynamics provide third-party credibility from dozens of academic scholars and analysts and, more important, supply valuable tools to provide pharma companies with insights and recommendations to speed up the development of their products and gain FDA approval.
“Pharma is a data-driven business,” explains Hussein Jaafar, a senior consultant at Lifescience Dynamics, who has largely led the charge on the team’s adoption of artificial intelligence. “To be able to consult our clients, we need to have access to as much data as possible.”
The power from Lifescience Dynamics comes from its five main technology products, which incorporate elements of artificial intelligence—including machine learning, large language models, and generative AI—to compute large data sets, amass information, and make educated recommendations.
On average, it takes eight to 12 years to discover, develop, and ultimately launch a drug. Along the way, pharmaceutical teams make several decisions, often under “conflicting, limited, or patchy data,” explains Lifescience Dynamics founder and president Rafaat Rahmani. To minimize risk, pharma companies are required to seek third-party research firms to validate their data and decision-making. That’s why Rahmani, who previously worked for Eli Lilly and other health care consultancies, started Lifescience Dynamics two decades ago.
Until the past few years with the explosion of AI capabilities, many of this team’s tasks were still done by hand, amassing thousands of hours of labor each year each. With more than 130 clients that hail from the majority of the world’s top 20 pharmaceutical companies, that was a hefty task but also left more opportunities for human error, a major challenge for something as regulated as the pharma industry.
Now, with the assistance of AI, some tasks take just 10 minutes, and confidence in the task is often 100%. Though Rahmani has long considered Lifescience Dynamics a technology-savvy company, the real benefit of that mentality has shown in its use of AI.
The areas of business where Jaafar has seen the biggest impact are possibly less sexy but unparalleled in value to clients and his own team: data collection, data analysis, and data visualization. Critical to the pharmaceutical industry is the tracking of clinical trials, especially by competitors. Jaafar explains that the team used to have “giant” Excel spreadsheets that a team member would need to physically click through, read updates online, then update the sheet. In 2021, they rolled out a machine-learning model that does this for the team by pulling information automatically from online registries like clinicaltrials.gov and continuously adding updates. The live feed automation, he says, has been key to streamlining their processes and increasing their effectiveness in meeting client expectations.
Similarly, he spearheaded a project that scrapes valuable information about sessions and drug updates from the major medical industry conference. Many of these events draw in upwards of 70,000 people with sometimes more than 5,000 sessions. It was a beast for a team to consolidate and analyze data before AI; now, the Lifescience Dynamics model pulls abstracts and details automatically, even summarizing and recommending sessions for attendance.
The insights gathered by Lifescience Dynamics all live in a client portal, allowing clients at any time to log on for a full look at their competitive intelligence projects, clinical trial data, and drug data. Jaafar explains that they are currently building AI models on top of that data to help clients query using natural language better understand the results. It not only adds transparency in the client-consultant relationship, but saves the Lifescience team from fielding time-intensive, resource-intensive questions from their clients.
More recently, Jaafar and his team looked at the benefits of generative AI, specifically around online surveys built to allow independent physicians to weigh in with critiques and recommendations for a particular drug. An important component of the peer review process, pharmaceutical companies reach out to physicians for real-world, patient-facing opinions on potential drugs. For Jaafar, generative AI and large-language models have allowed him to produce survey templates for online discussions among physicians as well as identify relevant experts for a specific survey.
“This was previously done entirely manually and we would just have to use our own experience and expertise to pull something together,” Jaafar says. “But with AI, we’re able to give it the background of the discussion guide we’d like to have, and it produces a very useful template that has us 80% of the way to a finalized guide.”
The team manually works on the remaining 20%.
While the team celebrates the success they have had with AI, Jaafar and Rahmani know bigger challenges await. Jaafar would like to build their own models for AI specific to their craft. Though Lifescience Dynamics can pull from its own historical data, the real value would come in more shared data from the industry. Unfortunately, he explains, the regulatory nature of health care and patient confidentiality combined with the competitive nature of the pharmaceutical industry means companies hold their own data close for a variety of reasons. A fear is that companies will continue to silo in fields of development rather than share collective data globally so that AI can learn at an exponential rate. There is simply less shareable data than other fields.
Rahmani predicts it will take more years to settle debates in pharmaceuticals over AI. For all the euphoria and excitement, there are old promises and leaders who just aren’t for technology, he says. He, however, feels confident in the future of AI as a tool to the industry’s collective success.
“I can understand why they aren’t willing to connect, but it limits the utility of AI,” Rahmani says. “Our clients engage us to give them the insight and convert insight into foresight, in the shortest time possible and in the least expensive way. These AI tools squeeze the most out of our data and bring that data alive.”