首页 500强 活动 榜单 商业 科技 领导力 专题 品牌中心
杂志订阅

我创业失败,只因这三个错误假设

Mona Sabet
2024-10-16

这位创业者的经历值得借鉴。

文本设置
小号
默认
大号
Plus(0条)

有时,创始人会过于沉迷技术,却忽视了创建商业上可行的业务所需的其他元素。

我就经历过,确实是这么做过,也从中吸取了教训。

2013年,我的工作相当不错,当时我在一家上市公司担任高管,薪资丰厚又稳定。但我总觉得不满意,感觉工作把我变成了机器,渴望重新创造点什么。

我创办过服务企业,有两家非营利组织现在还在,但我从未尝试过做产品的公司。恰好我刚做了一个视频技术相关的项目,发现视频应用人工智能蕴含着巨大机遇。

没多久我就辞职了。一位朋友向我介绍了技术联合创始人。其实我在自家就发现了实用案例:我给孩子拍了很多G视频,想要整理成方便重温的珍贵片段却很难。

我们把应用做得很丰富,可以用人工智能自动标记、分类和搜索视频,这样就能很容易地找到珍贵时刻或“自动”创建精彩片段。(请注意,这可是2013年,当时谷歌照片还没用上人工智能,苹果照片也还没有应用面部识别技术。)

团队很快扩充到10人,不到三年就推出了基于人工智能的技术领先的视频标签解决方案,可以通过浏览器或iPhone应用访问。产品也聚起了不少用户。

听起来是不是很像完美的创业故事?结果并非如此。最后,我们做出了艰难但正确的决定,把公司关了。我后悔吗?并不。我从Viblio学到的经验教训比在“机器模式”中过三年更有价值。

失败并不是因为执行不力,而是假设有问题。以下是我们的三个错误假设:

反馈足以证明产品与市场的契合度

创始人经常收到建议,即收集潜在客户的反馈验证想法。我们照做了。我们首先采访了符合目标受众标准的朋友。之后扩大范围,访问了活动中遇到的人。我们付费调查了1000名想测试的不同细分市场的人。我们分析相关数据,纳入推介方案,显示产品与市场的契合度。

这并不是说创始人得到的建议有误,只是这么做获得的信息经常掐头去尾,不够完整,也不够精练。

实际情况是,人们不喜欢当面告诉你这个创意机会不大。通过各种调研我们发现,人们认为这项技术很酷(因为确实如此!)。但这并不意味着所有人都愿意付费使用。

我应该发起预售,也就是介绍产品的网站,预付一定款项就能获得大幅折扣。如此我们能获得真实的数据,从中看出目标受众有没有从产品中看到足够的价值,且愿意为此付费。

如果没法获得买家的承诺,产品与市场的契合度就只能靠运气。

更多功能可提高粘性

我们并不是没有用户。产品采用了免费增值模式,人们可以免费使用服务,理论上以后会开发更多需要订阅的功能。

然而,用户并没有继续留在平台上。他们上传视频,使用了一些功能然后就消失了。

为了吸引用户,我们增加了更多功能,首先是自动创建精彩视频集,发送给早期用户,鼓励他们创建更多精彩视频。我们还添加了“脸部页面”,用户点击一张脸就会加载带有这张脸的所有视频。我们还尝试了很多自认为很酷的东西。但都没增加用户粘性。

事实证明,我们解决的问题本身就是错误的。我们以为要解决粘性问题,但始终没解决产品与市场的契合问题。

我们能找到需要的人才

创立Viblio时,人工智能正经历爆炸式发展(今天仍然如此,但方式完全不同)。当时谷歌刚收购DeepMind,科技公司正以六位数高薪雇佣机器学习专家。我们的种子资金根本不够。

我和联合创始人想在圈子里找合适的技术人员或目标市场都有点困难。我们运气不错找到一位资深人工智能专家,还聘请了一名刚大学毕业的机器学习工程师。再想找其他人基本不可能。我们做得不错,但仅仅靠着不错想在竞争激烈的领域创业远远不够。

现在作为初创公司的顾问,我想到了曾经错误的假设,也就是只要花钱就能组建合适的团队。一般来说如果人们选择高要求高风险的路,要么为了高薪,要么是为了追随仰慕之人。如果人际圈中没有业务领域的专家,花钱也不一定能组起需要的团队。

失败的价值

这三个假设导致我们距离产品真正契合市场越来越远。

由此,我开始体会到这段经历最大的收获。硅谷宣扬的所谓要找到产品与市场的契合点只是很小一块。必须对市场充满热情。要深入了解,还要拥有与之相关的人才组成的系统。

2016年,我们关闭了Viblio。即便公司失败,这段经历本身并没有失败。三年时间里,我学到的经验比当六年企业高管还要多。创业能教会人们安稳工作时永远也学不到的东西。在我创业失败获得的诸多教训中,有三条对于后来的成功格外有用:

• 少花钱多办事。我们用非常有限的预算构建了功能齐全的人工智能视频平台。很多上规模的公司之所以失败,就是因为很擅长花钱,最终却没做出多少实事!

• 严格确定重点。感觉上很多事都有必要,但并非一切都重要。要结束看起来很酷的事很困难,如果没效果就必须放弃。

• 正如他们所说,“要爱上问题,而不是解决方案。”(财富中文网)

莫娜·萨贝特为初创公司提供咨询服务,担任董事会成员,合著有新书《扬帆起航:初创公司从启动到退出如何避免错误》(Sail to Scale: Steering Startups Clear of Mistakes from Launch to Exit)。

译者:梁宇

审校:夏林

有时,创始人会过于沉迷技术,却忽视了创建商业上可行的业务所需的其他元素。

我就经历过,确实是这么做过,也从中吸取了教训。

2013年,我的工作相当不错,当时我在一家上市公司担任高管,薪资丰厚又稳定。但我总觉得不满意,感觉工作把我变成了机器,渴望重新创造点什么。

我创办过服务企业,有两家非营利组织现在还在,但我从未尝试过做产品的公司。恰好我刚做了一个视频技术相关的项目,发现视频应用人工智能蕴含着巨大机遇。

没多久我就辞职了。一位朋友向我介绍了技术联合创始人。其实我在自家就发现了实用案例:我给孩子拍了很多G视频,想要整理成方便重温的珍贵片段却很难。

我们把应用做得很丰富,可以用人工智能自动标记、分类和搜索视频,这样就能很容易地找到珍贵时刻或“自动”创建精彩片段。(请注意,这可是2013年,当时谷歌照片还没用上人工智能,苹果照片也还没有应用面部识别技术。)

团队很快扩充到10人,不到三年就推出了基于人工智能的技术领先的视频标签解决方案,可以通过浏览器或iPhone应用访问。产品也聚起了不少用户。

听起来是不是很像完美的创业故事?结果并非如此。最后,我们做出了艰难但正确的决定,把公司关了。我后悔吗?并不。我从Viblio学到的经验教训比在“机器模式”中过三年更有价值。

失败并不是因为执行不力,而是假设有问题。以下是我们的三个错误假设:

反馈足以证明产品与市场的契合度

创始人经常收到建议,即收集潜在客户的反馈验证想法。我们照做了。我们首先采访了符合目标受众标准的朋友。之后扩大范围,访问了活动中遇到的人。我们付费调查了1000名想测试的不同细分市场的人。我们分析相关数据,纳入推介方案,显示产品与市场的契合度。

这并不是说创始人得到的建议有误,只是这么做获得的信息经常掐头去尾,不够完整,也不够精练。

实际情况是,人们不喜欢当面告诉你这个创意机会不大。通过各种调研我们发现,人们认为这项技术很酷(因为确实如此!)。但这并不意味着所有人都愿意付费使用。

我应该发起预售,也就是介绍产品的网站,预付一定款项就能获得大幅折扣。如此我们能获得真实的数据,从中看出目标受众有没有从产品中看到足够的价值,且愿意为此付费。

如果没法获得买家的承诺,产品与市场的契合度就只能靠运气。

更多功能可提高粘性

我们并不是没有用户。产品采用了免费增值模式,人们可以免费使用服务,理论上以后会开发更多需要订阅的功能。

然而,用户并没有继续留在平台上。他们上传视频,使用了一些功能然后就消失了。

为了吸引用户,我们增加了更多功能,首先是自动创建精彩视频集,发送给早期用户,鼓励他们创建更多精彩视频。我们还添加了“脸部页面”,用户点击一张脸就会加载带有这张脸的所有视频。我们还尝试了很多自认为很酷的东西。但都没增加用户粘性。

事实证明,我们解决的问题本身就是错误的。我们以为要解决粘性问题,但始终没解决产品与市场的契合问题。

我们能找到需要的人才

创立Viblio时,人工智能正经历爆炸式发展(今天仍然如此,但方式完全不同)。当时谷歌刚收购DeepMind,科技公司正以六位数高薪雇佣机器学习专家。我们的种子资金根本不够。

我和联合创始人想在圈子里找合适的技术人员或目标市场都有点困难。我们运气不错找到一位资深人工智能专家,还聘请了一名刚大学毕业的机器学习工程师。再想找其他人基本不可能。我们做得不错,但仅仅靠着不错想在竞争激烈的领域创业远远不够。

现在作为初创公司的顾问,我想到了曾经错误的假设,也就是只要花钱就能组建合适的团队。一般来说如果人们选择高要求高风险的路,要么为了高薪,要么是为了追随仰慕之人。如果人际圈中没有业务领域的专家,花钱也不一定能组起需要的团队。

失败的价值

这三个假设导致我们距离产品真正契合市场越来越远。

由此,我开始体会到这段经历最大的收获。硅谷宣扬的所谓要找到产品与市场的契合点只是很小一块。必须对市场充满热情。要深入了解,还要拥有与之相关的人才组成的系统。

2016年,我们关闭了Viblio。即便公司失败,这段经历本身并没有失败。三年时间里,我学到的经验比当六年企业高管还要多。创业能教会人们安稳工作时永远也学不到的东西。在我创业失败获得的诸多教训中,有三条对于后来的成功格外有用:

• 少花钱多办事。我们用非常有限的预算构建了功能齐全的人工智能视频平台。很多上规模的公司之所以失败,就是因为很擅长花钱,最终却没做出多少实事!

• 严格确定重点。感觉上很多事都有必要,但并非一切都重要。要结束看起来很酷的事很困难,如果没效果就必须放弃。

• 正如他们所说,“要爱上问题,而不是解决方案。”(财富中文网)

莫娜·萨贝特为初创公司提供咨询服务,担任董事会成员,合著有新书《扬帆起航:初创公司从启动到退出如何避免错误》(Sail to Scale: Steering Startups Clear of Mistakes from Launch to Exit)。

译者:梁宇

审校:夏林

Sometimes founders fall so deeply in love with their technology that they become blind to the other elements they need to create a commercially viable business.

I’ve been there. I’ve done that. And I’ve learned from it.

Back in 2013, I had the dream job—executive role, great salary, stability at a public company. But I still wasn’t satisfied. I felt my job had made me an optimizer when I was itching to get back to being a builder.

I had founded services businesses before—and two nonprofits that continue to this day—but I had never built a product company. I had just finished a project about video technology and saw the huge opportunity in artificial intelligence applied to video.

Next thing I knew, I was quitting my job. A friend introduced me to a technical cofounder. I found the use case literally in my backyard: gigabytes of family videos of my young kids, impossible to organize into precious little bits I could relive.

We fleshed out the application, using AI to automatically tag, categorize, and search videos so you could easily find priceless moments or create “automagic” highlight reels. (Remember, this was in 2013, before Google Photos leveraged AI or Apple Photos used facial recognition.)

We grew to a team of 10, and in less than three years, we launched an advanced AI-based video tagging solution—available as an application accessed through a browser or in an iPhone app. And we had users.

Perfect startup story? It turned out not to be. In the end, we made the tough—but right—decision to shut down the venture. Do I regret that time? No. The lessons I learned from Viblio were more valuable than spending three years in “optimizer mode.”

Our failure wasn’t about execution—it was about assumptions. Here are the three mistaken assumptions we made:

Feedback is sufficient to prove product-market fit

A common piece of advice for founders is to validate their idea by seeking early feedback from potential customers. So, we did that. We started with interviews with friends who fit our target audience. We widened the circle to interview people we met at events. We paid to survey a thousand people that fit different market segments we wanted to test out. We analyzed the data and included it in our pitch decks to show product-market fit.

It’s not that the advice we get as founders is wrong—it’s just truncated, incomplete, pithy.

Here’s the thing. People don’t like telling you to your face that your idea isn’t going to be big. Our efforts showed that people thought the tech was cool (because it was!). But that didn’t mean anyone would pay to use the application we wanted to build.

What I should have done is set up a presell campaign: a website describing our product and offering a deep discount if people prepaid for the promise of delivery in the future. That would have given us real data on whether our target audience saw enough value in our product to pay something—anything—for it.

If you can’t get buyer commitment, it’s product-market fit by luck.

More features will drive stickiness

It’s not that we didn’t have users. We operated on a freemium model, where people could use our service for free with the theory that we’d build more features later that would require a subscription.

It’s just that our users didn’t stay engaged on our platform. They uploaded their videos, they played with some of our features, and then they disappeared.

So, we added more features, starting with automagically-created highlight reels that we sent to our early users along with a call to action to create more themselves. We added a “face page,” where you could click on a face and we’d load all the videos we found that contained that face. We tried doing a lot of other things we thought were really cool. Nothing drove stickiness.

Turns out we were solving the wrong problem. We thought we were solving for stickiness—but we still hadn’t solved for product-market fit.

We can hire who we need

When we started Viblio, AI was exploding (and still is today, but in a completely different way). Google had just acquired DeepMind, and tech companies were hiring machine learning specialists at high six-figure salaries. Our seed money just didn’t cut it.

Neither my cofounder nor I had the natural ecosystem for the right tech people or target markets. We lucked out engaging a senior AI person and ended up hiring a straight-out-of-college machine learning engineer. But it was impossible to hire anyone else in that field. We did pretty well, but pretty well isn’t enough to build a company in a highly competitive field.

As an advisor to startups today, I think about the mistaken assumption we made—that we could just pay our way to the right team. People choose demanding high-risk journeys either because they are paid a lot or because they are following other people they want to follow. If you lack people in your ecosystem who are experts in your startup’s area of focus, you won’t likely pay your way to the team you need.

The value of failure

These three assumptions led us further and further away from realizing our true product-market fit.

And thus, I came to understand my biggest learning. The Silicon Valley hype of finding your product-market fit isn’t enough. You must have passion about the market you are playing in. You must understand it, and have an ecosystem of people you can draw from who are connected to it.

We shut down Viblio in 2016. But even though the company failed, the journey was not a failure. In three years, I learned more than I had in six years in executive enterprise roles. Building a company teaches you things you’ll never get from working safely. Among the many lessons from my failed startup, I have focused on three in particular that have made me successful in my subsequent roles:

• Do more with less. We built a functioning AI video platform on a shoestring budget. Most scaling companies fail because they learn to spend more and still end up not doing more!

• Prioritize ruthlessly. Everything feels necessary, but not everything matters. It’s hard to shut down something that seems cool, but if it’s not moving the needle, it has to go.

• As they say, “fall in love with the problem, not the solution.”

Mona Sabet advises startups, serves on boards, and is coauthor of the new book Sail to Scale: Steering Startups Clear of Mistakes from Launch to Exit.

财富中文网所刊载内容之知识产权为财富媒体知识产权有限公司及/或相关权利人专属所有或持有。未经许可,禁止进行转载、摘编、复制及建立镜像等任何使用。
0条Plus
精彩评论
评论

撰写或查看更多评论

请打开财富Plus APP

前往打开