首页 500强 活动 榜单 商业 科技 商潮 专题 品牌中心
杂志订阅

人机协作与AI劳动力崛起:如何构建新型混合组织

AI智能体的进化将突破人类助手的局限,真正成为人类的数字同事。

文本设置
小号
默认
大号
Plus(0条)

图片来源:Courtesy of GETTY IMAGES

我们即将迎来新一轮混合办公革命:未来的组织不仅会融合线下员工与远程办公者,更将实现人类与AI智能体的协同共事。这些AI智能体将具备独立决策与执行能力,完全不同于当前主流的生成式AI工具依赖详细用户指令的工作模式。例如它们能够解析情境语义,根据实时信息动态调整策略,自主构思解决方案,甚至与人类同事形成互补搭档,共同应对复杂多元的工作挑战。

AI智能体的进化将突破人类助手的局限,真正成为人类的数字同事。通过人类和AI能力的有机融合,这种新型混合团队创造的竞争优势将远超增量效率提升。这场变革也对企业管理者提出了更高要求——需要以审慎的领导力平衡人类员工与AI技术的协作关系,深度挖掘双方独特优势。

新型混合协作模式

在大型跨国企业中,许多员工已习惯于通过Slitch或Microsoft Teams与素未谋面的同事协作。即便与熟悉的同事之间,实时数字沟通的频率也远超线下会议。目前,这些交互的另一端仍是人类在提供专业知识或执行具体任务。尽管许多员工已开始使用ChatGPT等生成式AI工具辅助定向分析与执行工作任务,但随着AI技术日趋成熟,这种关系将迎来质变:AI智能体不再是人类员工的“工具”或“助手”,而将成为数字交互另一端的"同事"。

这一混合协作模式的实现,得益于大语言模型自然语言处理能力的突破,使人类可以用与人类同事沟通的方式,与AI智能体进行交流。大语言模型的推理能力可将自然语言指令直接转化为行动,无需预设代码、详细操作指南甚至明确步骤。即使只输入概念性描述,AI同事仍能自主制定并执行计划,并在必要时寻求反馈。

从许多方面而言,人类与AI的交互逻辑类似于自动驾驶汽车中的乘客:只需为汽车设定目的地,无需输入刹车或加速等具体操作指令。自动驾驶汽车可以规划路线,并且通过收集和处理环境数据进行行动规划和执行。AI同事也将具备类似能力——解析语境、调用其他工具与外部系统制定计划,甚至自主决策。它们还能积累任务记忆,通过持续学习优化重复性工作。

更值得关注的是,人类与AI的同事关系可能进一步演进:AI同事还能主动向人类提出任务建议并提供指导。尽管这在短期内难以实现,但随着技术与思维模式的转变,未来人类与AI同事或将根据情境相互"管理",类似当前人类团队的协作模式。

AI智能体向"同事"角色的转型趋势已然清晰。例如AI软件公司Artisan正在开发AI销售助手,其功能远超传统自动化工具——能进行超个性化客户触达,甚至在沟通中融入情商。该智能体持续学习迭代,执行战略线索研究并主动管理邮件触达。人类销售团队与Artisan的AI智能体合作,负责设定初始营销参数、监控效果并提供实时反馈。

当前,AI智能体正加速渗透财务、人力资源、供应链管理等职能领域,承担需要数据驱动分析与情境化决策的高阶任务。技术能力的跃迁终将重塑软件即服务(SaaS)模式:AI智能体将提供软件即服务。

驾驭下一个新前沿

人类与人工智能的多元交互将定义这个新前沿领域,由此催生出无数机遇与技术突破。虽然我们尚无法预知这场变革的所有可能走向,但今天的领导者亟需重构团队协作机制——需要精准判断哪些工作环节应由AI智能体承担,哪些领域仍需人类智慧主导。这要求企业以创造性思维重新设计流程架构,在充分释放技术发展潜能的同时,必须深入评估变革的复杂度、风险敞口及利益相关方影响,审慎权衡技术能力与商业风险的平衡之道。

正如英伟达(NVIDIA)联合创始人黄仁勋近期所言:“未来,每家企业的IT部门都将转型为AI智能体的人力资源部。”先行者已开启组织变革,例如生物医药巨头莫德纳(Moderna)就将数字化技术纳入首席人力资源官或首席人事官的职权范围。

企业领导者在迎接这场现实变革时,需要掌控四个至关重要的领域:

建立信任:有时候我们看到公众在采用新AI解决方案时会犹豫不决,例如在旧金山投放Waymo自动驾驶汽车,因此人们在初期面对AI同事肯定也会感到恐慌。这就是为什么信任是影响广泛应用的关键障碍。领导者需要支持团队学会在哪些情况下可以信任AI,如何验证或挑战AI输出的结果,以确保最终决策符合企业的整体商业目标。

早期采用者,例如采用赛富时(Salesforce)AI支持应用Agentforce的公司,已经发现了达成这种平衡的必要性。虽然这些企业表示AI在简化客户查询方面取得成功,但他们也强调有必要培养管理者对AI生成结果的解读能力,而不是认为这些结果绝对正确。面对更加复杂的情况,管理者还必须能够驾驭AI同事与人类同事之间的互动。建立信任可能需要在初期限制更有自主性或更具创造性的AI智能体的能力,直到人类同事适应新的工作环境。

匹配与最大化能力:人类与人工智能的能力并不相同,这种二元性在莫拉维克悖论中得到了体现:对人类来说困难的任务,如复杂计算或分析海量数据集等,对计算机来说却很容易;而对计算机来说困难的任务,如社交技能,对人类来说却轻而易举。

这种平衡实际上是AI的一个特点,而非缺陷:它实现了以前无法实现的多样性和互补性。通过将人类与人工智能结合起来,我们能够越来越多地获得“增强的集体智能”——超越人类或机器单独所能实现的洞察力和能力。当今技术的变化速度意味着,领导者必须不断重新评估和优化哪些任务最适合由人类、AI智能体单独完成或由两者共同完成,以充分挖掘增强的集体智能的价值。

实现可扩展性:AI智能体的能力可以根据需要灵活调整,这种动态扩展部分劳动力的能力将需要一种系统化的劳动力规划方法。AI智能体能够全天候运行并按需扩展,因此可能拖慢运营速度的是人类与AI之间的接口。管理者需要设计人类与AI之间的顺畅接口,以确保在新的混合劳动力中实现无缝运营。

重新定义“适配”:当今的招聘和绩效管理系统通常强调整体的“文化适配”,以描述员工在既定团队中有效工作的能力。展望未来,领导者可能还需要纳入“交互适配”,即人类团队成员需要具备与AI同事合作的能力。

尽管发生了这些变化,我们仍然认为,某些基本的管理原则对于培养成功的人类-AI混合劳动力仍然至关重要。

例如,研究表明,多样性提高了解决问题的质量,并促进了人类团队中的创新。我们预计这一原则不仅适用于AI智能体为全人类团队增加的多样性,也适用于AI智能体群体中的多样性,如不同的能力或训练集。

在混合劳动力中,某些“AI角色”可能会高度专业化,如解读月度财务报表的财务分析师助手,有些则可能是通才。互补性仍将至关重要。管理者需要找到专业化和通用AI解决方案的合适组合,以配合人类员工工作。

促进协作仍然至关重要。然而,与新的AI同事协作可能需要在开始时解释技术如何做出决策。还可以定期举行AI审查会议,让人类团队成员检查AI输出的结果。对员工进行AI基本原则培训同样至关重要,使人类能够自信地评估和接受机器生成的建议。

无论技术如何进步,组织如何管理这种新的混合劳动力最终将产生持久的竞争优势。现在将AI智能体作为同事的公司将在生产力、创新和成本效率方面获得竞争优势。我们正处于新混合劳动力时代的开端,在即将到来的人机协同浪潮中,公司越早调整工作方式,就越能增强实验、适应和应用的能力。(财富中文网)

译者:刘进龙

审校:汪皓

我们即将迎来新一轮混合办公革命:未来的组织不仅会融合线下员工与远程办公者,更将实现人类与AI智能体的协同共事。这些AI智能体将具备独立决策与执行能力,完全不同于当前主流的生成式AI工具依赖详细用户指令的工作模式。例如它们能够解析情境语义,根据实时信息动态调整策略,自主构思解决方案,甚至与人类同事形成互补搭档,共同应对复杂多元的工作挑战。

AI智能体的进化将突破人类助手的局限,真正成为人类的数字同事。通过人类和AI能力的有机融合,这种新型混合团队创造的竞争优势将远超增量效率提升。这场变革也对企业管理者提出了更高要求——需要以审慎的领导力平衡人类员工与AI技术的协作关系,深度挖掘双方独特优势。

新型混合协作模式

在大型跨国企业中,许多员工已习惯于通过Slitch或Microsoft Teams与素未谋面的同事协作。即便与熟悉的同事之间,实时数字沟通的频率也远超线下会议。目前,这些交互的另一端仍是人类在提供专业知识或执行具体任务。尽管许多员工已开始使用ChatGPT等生成式AI工具辅助定向分析与执行工作任务,但随着AI技术日趋成熟,这种关系将迎来质变:AI智能体不再是人类员工的“工具”或“助手”,而将成为数字交互另一端的"同事"。

这一混合协作模式的实现,得益于大语言模型自然语言处理能力的突破,使人类可以用与人类同事沟通的方式,与AI智能体进行交流。大语言模型的推理能力可将自然语言指令直接转化为行动,无需预设代码、详细操作指南甚至明确步骤。即使只输入概念性描述,AI同事仍能自主制定并执行计划,并在必要时寻求反馈。

从许多方面而言,人类与AI的交互逻辑类似于自动驾驶汽车中的乘客:只需为汽车设定目的地,无需输入刹车或加速等具体操作指令。自动驾驶汽车可以规划路线,并且通过收集和处理环境数据进行行动规划和执行。AI同事也将具备类似能力——解析语境、调用其他工具与外部系统制定计划,甚至自主决策。它们还能积累任务记忆,通过持续学习优化重复性工作。

更值得关注的是,人类与AI的同事关系可能进一步演进:AI同事还能主动向人类提出任务建议并提供指导。尽管这在短期内难以实现,但随着技术与思维模式的转变,未来人类与AI同事或将根据情境相互"管理",类似当前人类团队的协作模式。

AI智能体向"同事"角色的转型趋势已然清晰。例如AI软件公司Artisan正在开发AI销售助手,其功能远超传统自动化工具——能进行超个性化客户触达,甚至在沟通中融入情商。该智能体持续学习迭代,执行战略线索研究并主动管理邮件触达。人类销售团队与Artisan的AI智能体合作,负责设定初始营销参数、监控效果并提供实时反馈。

当前,AI智能体正加速渗透财务、人力资源、供应链管理等职能领域,承担需要数据驱动分析与情境化决策的高阶任务。技术能力的跃迁终将重塑软件即服务(SaaS)模式:AI智能体将提供软件即服务。

驾驭下一个新前沿

人类与人工智能的多元交互将定义这个新前沿领域,由此催生出无数机遇与技术突破。虽然我们尚无法预知这场变革的所有可能走向,但今天的领导者亟需重构团队协作机制——需要精准判断哪些工作环节应由AI智能体承担,哪些领域仍需人类智慧主导。这要求企业以创造性思维重新设计流程架构,在充分释放技术发展潜能的同时,必须深入评估变革的复杂度、风险敞口及利益相关方影响,审慎权衡技术能力与商业风险的平衡之道。

正如英伟达(NVIDIA)联合创始人黄仁勋近期所言:“未来,每家企业的IT部门都将转型为AI智能体的人力资源部。”先行者已开启组织变革,例如生物医药巨头莫德纳(Moderna)就将数字化技术纳入首席人力资源官或首席人事官的职权范围。

企业领导者在迎接这场现实变革时,需要掌控四个至关重要的领域:

建立信任:有时候我们看到公众在采用新AI解决方案时会犹豫不决,例如在旧金山投放Waymo自动驾驶汽车,因此人们在初期面对AI同事肯定也会感到恐慌。这就是为什么信任是影响广泛应用的关键障碍。领导者需要支持团队学会在哪些情况下可以信任AI,如何验证或挑战AI输出的结果,以确保最终决策符合企业的整体商业目标。

早期采用者,例如采用赛富时(Salesforce)AI支持应用Agentforce的公司,已经发现了达成这种平衡的必要性。虽然这些企业表示AI在简化客户查询方面取得成功,但他们也强调有必要培养管理者对AI生成结果的解读能力,而不是认为这些结果绝对正确。面对更加复杂的情况,管理者还必须能够驾驭AI同事与人类同事之间的互动。建立信任可能需要在初期限制更有自主性或更具创造性的AI智能体的能力,直到人类同事适应新的工作环境。

匹配与最大化能力:人类与人工智能的能力并不相同,这种二元性在莫拉维克悖论中得到了体现:对人类来说困难的任务,如复杂计算或分析海量数据集等,对计算机来说却很容易;而对计算机来说困难的任务,如社交技能,对人类来说却轻而易举。

这种平衡实际上是AI的一个特点,而非缺陷:它实现了以前无法实现的多样性和互补性。通过将人类与人工智能结合起来,我们能够越来越多地获得“增强的集体智能”——超越人类或机器单独所能实现的洞察力和能力。当今技术的变化速度意味着,领导者必须不断重新评估和优化哪些任务最适合由人类、AI智能体单独完成或由两者共同完成,以充分挖掘增强的集体智能的价值。

实现可扩展性:AI智能体的能力可以根据需要灵活调整,这种动态扩展部分劳动力的能力将需要一种系统化的劳动力规划方法。AI智能体能够全天候运行并按需扩展,因此可能拖慢运营速度的是人类与AI之间的接口。管理者需要设计人类与AI之间的顺畅接口,以确保在新的混合劳动力中实现无缝运营。

重新定义“适配”:当今的招聘和绩效管理系统通常强调整体的“文化适配”,以描述员工在既定团队中有效工作的能力。展望未来,领导者可能还需要纳入“交互适配”,即人类团队成员需要具备与AI同事合作的能力。

尽管发生了这些变化,我们仍然认为,某些基本的管理原则对于培养成功的人类-AI混合劳动力仍然至关重要。

例如,研究表明,多样性提高了解决问题的质量,并促进了人类团队中的创新。我们预计这一原则不仅适用于AI智能体为全人类团队增加的多样性,也适用于AI智能体群体中的多样性,如不同的能力或训练集。

在混合劳动力中,某些“AI角色”可能会高度专业化,如解读月度财务报表的财务分析师助手,有些则可能是通才。互补性仍将至关重要。管理者需要找到专业化和通用AI解决方案的合适组合,以配合人类员工工作。

促进协作仍然至关重要。然而,与新的AI同事协作可能需要在开始时解释技术如何做出决策。还可以定期举行AI审查会议,让人类团队成员检查AI输出的结果。对员工进行AI基本原则培训同样至关重要,使人类能够自信地评估和接受机器生成的建议。

无论技术如何进步,组织如何管理这种新的混合劳动力最终将产生持久的竞争优势。现在将AI智能体作为同事的公司将在生产力、创新和成本效率方面获得竞争优势。我们正处于新混合劳动力时代的开端,在即将到来的人机协同浪潮中,公司越早调整工作方式,就越能增强实验、适应和应用的能力。(财富中文网)

译者:刘进龙

审校:汪皓

We are on the cusp of a new wave of hybrid work where organizations won’t just mix in-person and remote workers—they’ll pair humans and AI agents as co-workers. These AI agents will have the ability to take and act on decisions independently and will not be reliant on detailed user inputs, as today’s mainstream GenAI tools are. For example, they will be capable of interpreting context, adapting dynamically to new information, independently ideating, and even partnering with human colleagues to tackle complex and varied tasks.

AI agents are set to go beyond simply augmenting humans to being true co-workers alongside us. By combining human and AI capabilities, these hybrid teams promise to create new possibilities to deliver competitive advantage far beyond incremental productivity gains. This coming shift also demands thoughtful leadership to balance human workers and AI technologies to ensure the unique strengths of each are maximized.

The new hybrid

In large global organizations, many workers already find themselves collaborating through Slack or Microsoft Teams with colleagues they have never spoken to, let alone met in-person. Even with close colleagues, these real-time digital interactions often outnumber face-to-face meetings. Today, there is another human at the other end of those interactions, providing their expertise or performing a specific task. While many workers have already begun incorporating GenAI tools, like ChatGPT, to help with targeted analyses and tasks, the increasing maturity of AI will take this relationship a crucial step further: rather than being a tool or aide to existing human workers, the AI agent will become the “coworker” on the other end of those digital interactions.

This emerging hybrid workforce has been made possible by advances in the natural language processing of large language models (LLMs) that enable humans to communicate with AI agents in the same way they would with a human team member. The reasoning capabilities of LLMs allow natural language instructions to be translated into action without the need for prescriptive code or detailed instructions, or even well-defined steps. Inputs can be more notional, and the AI coworker can still develop and execute a plan, coming back for feedback as needed.

In many ways, the interactions of humans and AI colleagues will be analogous to human passengers in self-driving cars. The cars require a destination, but not specific instructions on when to brake or accelerate. Self-driving cars plot a course, but also receive new data about their surroundings, processing it to plan and execute actions. AI coworkers will be able to act similarly: interpreting context, interacting with other tools and external systems to develop a plan, and even making certain decisions autonomously. They will also maintain task memory so they can learn and improve on the jobs they do regularly.

Moreover, this human-AI co-worker relationship will likely evolve such that AI coworkers can give their human colleagues recommendations, suggesting tasks and even guiding them through them. While this will not happen immediately, along with both technological and human mindset changes, ultimately, both human and AI coworkers may “manage” one another, depending on the context, in ways analogous to current human teaming models.

The ongoing trajectory towards AI agents as coworkers is clear. Startups such as the AI software company Artisan are already developing AI sales agents that go beyond simple automation with hyper-personalized outreach that can even incorporate emotional intelligence in its messaging. The agent continuously learns and adapts, conducts strategic lead research, and proactively manages email outreach. Human sales teams partner with Artisan’s AI agent to define the initial campaign parameters, monitor performance and provide feedback in real time.

AI agents are increasingly being developed for a range of functional roles—including finance, HR and supply chain management—taking on high-level tasks that demand both data-driven analysis and contextual decision-making. The technology’s capabilities will ultimately flip the software-as-a-Service (SaaS) model: AI agents will now be providing service as a software.

Managing the next frontier

This new frontier will be defined by the many novel interactions between humans and AI, resulting in numerous opportunities and technologies. While we cannot know all the possible outcomes of this fast-approaching future, it is nevertheless critical for leaders today to rethink how their teams get work done, and which parts of the workflow are best conducted by AI coworkers or human team members. This will require a creative reimagining of processes to get the most out of the latest technological developments, as well as an understanding of the complexity, risk, and stakeholder impact to balance technical capabilities with business risks.

As NVIDIA co-founder Jensen Huang said recently, “in a lot of ways, the IT department of every company is going to be the HR department of AI agents in the future.” Some companies, like the pharmaceutical company Moderna, have already begun this organizational shift by incorporating digital technologies under the remit of their chief human resources officer or chief people officer.

As leaders prepare to adapt to this coming reality, there are four key areas of change that will be critical to manage:

Building trust: Just as we sometimes see public hesitancy about adopting new AI solutions—like the use of self-driving Waymo cars on the streets of San Francisco—there will surely be early trepidation about having an AI coworker. That’s why trust is a key barrier to widespread adoption. Leaders will need to empower their teams to learn when to trust AI and how to validate or challenge outputs to ensure that final decisions align with overarching business goals.

Early adopters, such as companies already using Salesforce’s AI support application Agentforce, have discovered the necessity of striking this balance. While they reported success in its ability to successfully streamline customer inquiries, they also emphasized the need to develop their managers’ ability to interpret AI-driven findings, and not just view them as infallible. When more complex situations arise, managers must also be able to navigate the interplay between AI coworkers and human colleagues. Building trust may require initially constraining the capabilities of more autonomous or creative agents until their human co-workers have adapted to the new workplace.

Matching and maximizing capabilities: Human and artificial intelligence capabilities are not the same, a duality encapsulated in Moravec’s Paradox: Tasks that are difficult for humans, like complex calculations or analyzing massive datasets, are easy for computers, while tasks that are difficult for computers, such as social skills, come easily to humans.

This balance is in fact a feature of AI, not a bug: it enables diversity and complementarity that was previously not possible. By bringing together human and artificial intelligence, we can increasingly access “augmented collective intelligence” – insights and capabilities that go beyond what either humans or machines could achieve on their own. The speed at which today’s technology is changing means that leaders will have to consistently re-evaluate and optimize what can best be accomplished by humans, by AI agents, and by humans and AI together to extract full value from augmented collective intelligence.

Enabling scalability: The capacity of AI agents can be ramped up and down as needed, and this ability to dynamically scale part of the workforce will require a systems approach to workforce planning. AI agents will be able to operate around the clock and scale on-demand, and hence what is likely to slow operations down are the interfaces between humans and AI. Managers will need to design smooth interfaces between human and AI workers to ensure seamless operations in the new hybrid workforce.

Redefining ‘fit’: Today’s hiring and performance management systems often emphasize overall “cultural fit” to describe an employee’s ability to work effectively within its established teams. Looking ahead, leaders might also need to incorporate “interaction fit,” where the skills they look for in human team members will include the ability to work with AI coworkers.

Despite these changes, we also hypothesize that some fundamental tenets of management will remain critical to fostering a successful human-AI hybrid workforce.

For example, research has shown that diversity increases the quality of problem solving and increases innovation among human teams. We expect this principle to hold not only when considering the added diversity that AI agents will add to all-human teams but also diversity amongst the pool of AI agents, such as different capabilities or training sets.

In a hybrid workforce, certain “AI roles” will likely be highly specialized, like a financial analyst agent for interpreting monthly financials, while others are generalists. Complementarity will continue to be key, and managers will need to find the right mix of specialized and general AI solutions to work alongside human workers.

Fostering collaboration will still be critical. Collaborating with new AI coworkers, however, could require some explainability at the outset to convey how the tech comes to its decisions. Regular AI review sessions, where human team members examine AI outputs, can help. Employee training on basic AI principles will also be critical to enabling humans to confidently evaluate and collaborate with machine-generated recommendations.

No matter how far the technology advances, it is how organizations manage this new hybrid workforce that will ultimately yield durable competitive advantage. Companies incorporating AI agents as coworkers now will have an edge over competitors in productivity, innovation, and cost efficiency. We are at the start of the new hybrid, and those organizations that start early in adapting their ways of working will build the corporate muscle to experiment, adapt, and adopt the coming wave of AI coworkers.

财富中文网所刊载内容之知识产权为财富媒体知识产权有限公司及/或相关权利人专属所有或持有。未经许可,禁止进行转载、摘编、复制及建立镜像等任何使用。
0条Plus
精彩评论
评论

撰写或查看更多评论

请打开财富Plus APP

前往打开