首页 500强 活动 榜单 商业 科技 商潮 专题 品牌中心
杂志订阅

软件漏洞令专家难以招架,人工智能或许能够提供帮助

Christian Vasquez
2025-03-28

更广泛地应用人工智能或将助力企业确定修复软件漏洞的优先顺序。

文本设置
小号
默认
大号
Plus(0条)

图片来源:Jakub Porzycki/NurPhoto via Getty Images

在网络安全领域工作20多年后,大卫·林德纳(David Lindner)已做好准备迎接行业变革。

作为网络安全公司Contrast Security的首席信息安全官,他正在推动同行们从传统的安全从业者转型为人工智能的早期采纳者。他在安全领域工作了很长时间,他认为该行业需要借助人工智能实现变革,以免在遭受重大网络攻击后才被迫采取行动。

林德纳表示:“安全领域在适应变化方面,有时表现得极为迟缓。我认为我们正处在变革的边缘。我确实认为人们将不得不开始采取不同的做法。”

多年来,软件生态系统一直饱受漏洞困扰,为恶意黑客提供了大量可乘之机。与此同时,软件的产出速度不断加快,已知缺陷也层出不穷。

林德纳警告称,开发人员利用人工智能加速软件开发,这不仅会扩大黑客的攻击目标范围,还会催生更多漏洞。他认为,应对策略在于更广泛地应用人工智能,以抵消其可能带来的负面影响,并助力企业确定网络安全工作的优先事项。

确定优先事项在一定程度上取决于每家公司所独有的基础设施以及所运营的产品特性。林德纳指出,这是一项艰巨的任务,需要耗费大量资源。

美国国家计算机通用漏洞数据库(National Vulnerability Database)是一个由联邦政府运营的软件漏洞数据库,每天追踪并发布上百个严重程度不一的漏洞。部分漏洞可忽略不计,而另一些则应立即修复或采取降低风险措施。

等开发人员着手修复漏洞时,往往又有新的漏洞加入到本就积压已久的漏洞列表中。软件安全公司Veracode的一份报告显示,在近一半的机构中,关键漏洞在软件中的滞留时间超过一年,局面几乎失控。

林德纳用应用安全领域的行业术语解释道:“确定优先顺序始终是应用安全工作的核心所在,因为在关键环节,信息匮乏的问题长期存在。”

林德纳的技术生涯始于开发人员,随后迅速对安全领域产生了兴趣。他最初在一家中型保险公司从事安全领域的工作,彼时该公司正初步探索应用网络安全之道。

林德纳刚加入安全团队时,就接触到了渗透测试领域,即企业委托专业黑客尝试找出其产品中的漏洞和安全隐患。

林德纳表示:“我们聘请了第三方开展(渗透)测试,我当时眼前一亮。我心想,哇,这太棒了。太酷了,于是我决定去攻读硕士学位。”

2006年获得硕士学位后,他在应用安全领域工作了约15年。之后,林德纳先是进入IBM工作,然后在同一领域从事咨询工作约8年。2008年,他加入了一家安全公司,该公司的部分业务后来剥离出来,最终成为Contrast Security。

如今,他认为无论人们是否做好准备,生态系统已准备好迎接重大变革。软件开发人员和网络安全从业人员就如同置身于一艘满是漏洞的船上,而他们手中用以应对危机的水桶同样满是漏洞。林德纳说:“诸多表象已然改变,但本质上却又仿佛一切如旧。”

修复漏洞对林德纳而言,往往是一个令人沮丧的话题,这很大程度上源于他多年来目睹的情况始终未见好转。例如,专注于软件安全的非营利机构开放式Web应用程序安全项目(OWASP)每年都会发布十大web应用安全风险,而据林德纳所言,这些年度风险榜单中的条目总是大同小异。

林德纳推动更广泛地采用人工智能,部分原因是他听到一些首席信息安全官以安全和隐私问题为由抵制人工智能工具。然而,他指出,在生成式软件风靡之前,多年来,该行业就已经以各种形式使用人工智能了。比如,电子邮件垃圾邮件过滤器就是机器学习的早期应用实例,很快便成为处理大量垃圾邮件的常规解决方案。

林德纳说:“我希望看到人们接受并利用新技术。人工智能并不可怕。它很强大,会对我们有所帮助。”(财富中文网)

译者:中慧言-王芳

在网络安全领域工作20多年后,大卫·林德纳(David Lindner)已做好准备迎接行业变革。

作为网络安全公司Contrast Security的首席信息安全官,他正在推动同行们从传统的安全从业者转型为人工智能的早期采纳者。他在安全领域工作了很长时间,他认为该行业需要借助人工智能实现变革,以免在遭受重大网络攻击后才被迫采取行动。

林德纳表示:“安全领域在适应变化方面,有时表现得极为迟缓。我认为我们正处在变革的边缘。我确实认为人们将不得不开始采取不同的做法。”

多年来,软件生态系统一直饱受漏洞困扰,为恶意黑客提供了大量可乘之机。与此同时,软件的产出速度不断加快,已知缺陷也层出不穷。

林德纳警告称,开发人员利用人工智能加速软件开发,这不仅会扩大黑客的攻击目标范围,还会催生更多漏洞。他认为,应对策略在于更广泛地应用人工智能,以抵消其可能带来的负面影响,并助力企业确定网络安全工作的优先事项。

确定优先事项在一定程度上取决于每家公司所独有的基础设施以及所运营的产品特性。林德纳指出,这是一项艰巨的任务,需要耗费大量资源。

美国国家计算机通用漏洞数据库(National Vulnerability Database)是一个由联邦政府运营的软件漏洞数据库,每天追踪并发布上百个严重程度不一的漏洞。部分漏洞可忽略不计,而另一些则应立即修复或采取降低风险措施。

等开发人员着手修复漏洞时,往往又有新的漏洞加入到本就积压已久的漏洞列表中。软件安全公司Veracode的一份报告显示,在近一半的机构中,关键漏洞在软件中的滞留时间超过一年,局面几乎失控。

林德纳用应用安全领域的行业术语解释道:“确定优先顺序始终是应用安全工作的核心所在,因为在关键环节,信息匮乏的问题长期存在。”

林德纳的技术生涯始于开发人员,随后迅速对安全领域产生了兴趣。他最初在一家中型保险公司从事安全领域的工作,彼时该公司正初步探索应用网络安全之道。

林德纳刚加入安全团队时,就接触到了渗透测试领域,即企业委托专业黑客尝试找出其产品中的漏洞和安全隐患。

林德纳表示:“我们聘请了第三方开展(渗透)测试,我当时眼前一亮。我心想,哇,这太棒了。太酷了,于是我决定去攻读硕士学位。”

2006年获得硕士学位后,他在应用安全领域工作了约15年。之后,林德纳先是进入IBM工作,然后在同一领域从事咨询工作约8年。2008年,他加入了一家安全公司,该公司的部分业务后来剥离出来,最终成为Contrast Security。

如今,他认为无论人们是否做好准备,生态系统已准备好迎接重大变革。软件开发人员和网络安全从业人员就如同置身于一艘满是漏洞的船上,而他们手中用以应对危机的水桶同样满是漏洞。林德纳说:“诸多表象已然改变,但本质上却又仿佛一切如旧。”

修复漏洞对林德纳而言,往往是一个令人沮丧的话题,这很大程度上源于他多年来目睹的情况始终未见好转。例如,专注于软件安全的非营利机构开放式Web应用程序安全项目(OWASP)每年都会发布十大web应用安全风险,而据林德纳所言,这些年度风险榜单中的条目总是大同小异。

林德纳推动更广泛地采用人工智能,部分原因是他听到一些首席信息安全官以安全和隐私问题为由抵制人工智能工具。然而,他指出,在生成式软件风靡之前,多年来,该行业就已经以各种形式使用人工智能了。比如,电子邮件垃圾邮件过滤器就是机器学习的早期应用实例,很快便成为处理大量垃圾邮件的常规解决方案。

林德纳说:“我希望看到人们接受并利用新技术。人工智能并不可怕。它很强大,会对我们有所帮助。”(财富中文网)

译者:中慧言-王芳

After spending more than 20 years in the cybersecurity field, David Lindner is ready for the industry to change.

As chief information security officer at cybersecurity firm Contrast Security, he’s pushing for fellow CISOs to be more early-adopter enthusiasts than old school security practitioners. Having spent a good portion of his career in security, he thinks the industry needs to change by using artificial intelligence before a major cyberattack forces its hand.

“Security is just slow to adapt sometimes,” Lindner said. “I think we’re on the precipice of something different. I really think people are going to have to start doing things differently.”

For years, the software ecosystem has been infested with bugs, leaving malicious hackers with a buffet of options to exploit. Meanwhile, software continues to be churned out at an ever increasing pace and rife with known defects.

Lindner warns that developers using artificial intelligence to speed up software production will increase the amount of options that hackers can attack as well as increase the number of vulnerabilities. The answer is to fight the consequences of artificial intelligence with more artificial intelligence, Lindner said, to help organizations determine what their cybersecurity priorities should be.

Deciding priorities depends partly on the unique infrastructure and products each company owns and operates. It’s a monumental task that takes up huge resources, argues Lindner.

The National Vulnerability Database, a federally-run repository of software vulnerabilities, tracks and releases over a hundred bugs daily that vary in severity. Some bugs can be safely ignored, but others should be immediately patched or the risk mitigated.

By the time developers can get around to fixing bugs, there are often new ones to join the already long backlog of vulnerabilities. The situation is so unmanageable that nearly half of all organizations have had a critical vulnerability remain in their software for longer than a year, a report by the software security firm Veracode found.

“Prioritization has been forever the vein of AppSec’s existence, because we just don’t ever have enough information where it matters,” Lindner said, using industry jargon for application security.

Lindner began his technology career as a developer before quickly finding an interest in security. He started in the security field at a medium-sized insurance company that was just beginning to explore application cybersecurity.

Lindner had just joined the security team when he discovered the world of penetration testing, or when professional hackers are paid by companies to try to find bugs and vulnerabilities in their products.

“We hired a third party to come in and run a [penetration] test and my eyes just kind of lit up,” Lindner said. “I was like holy s***, this is awesome. This is so cool and I decided to go get my master’s.”

He spent the better part of 15 years in application security after finishing his master’s in 2006. Lindner next went to IBM before consulting in the same space for around eight years. In 2008 he went to a security firm, of which a portion would spin out to eventually become Contrast Security.

Now, he believes the ecosystem is ready for major change—whether people are ready for it or not. Software developers and cybersecurity practitioners are essentially in a boat filled with holes, armed with a bucket that is also filled with holes. “A lot has changed, but nothing has changed,” Lindner said.

Fixing vulnerabilities is often a frustrating topic for Lindner, largely because he’s been seeing the same thing for years. For example, the Open Worldwide Application Security Project (OWASP), a nonprofit organization that focuses on software security, releases the top 10 web application security risks every year. And every year, the top 10 risks are largely the same, Lindner said.

Lindner’s push for more AI is partly driven by CISO’s he has heard from who oppose using AI tools, citing security and privacy issues. However, he says the industry has been using AI in one form or another for years before generative software became popular. For example, email spam filters is an early use of machine learning that quickly became a norm to deal with the deluge of unwanted emails.

“I want to see people embrace it and take advantage of newer things,” Lindner said. “AI is not scary. It’s powerful and it’s going to help us.”

财富中文网所刊载内容之知识产权为财富媒体知识产权有限公司及/或相关权利人专属所有或持有。未经许可,禁止进行转载、摘编、复制及建立镜像等任何使用。
0条Plus
精彩评论
评论

撰写或查看更多评论

请打开财富Plus APP

前往打开