首页 500强 活动 榜单 商业 科技 领导力 专题 品牌中心
杂志订阅

人工智能和城市的未来

SEYDINA FALL
2024-12-04

人工智能能否创造足够的价值,以证明其在城市规划中的应用是正当的?

文本设置
小号
默认
大号
Plus(0条)

美国加州旧金山泛美金字塔夜景鸟瞰图。图片来源:MATTEO COLOMBO—GETTY IMAGES

预计到2050年,全球70%的人口将居住在城市,这一庞大的数字使城市规划更具挑战性。因此,规划者寻求技术的帮助,尤其是最近兴起的生成式人工智能,以帮助设计、分析和开发那些拥挤不堪的地区。

技术狂热者设想,城市规划者可以运用人工智能技术来研究开发提案、分析拟议的分区变更、制定全新的城市总体规划或优化现有规划。

在最近的一个测试案例中,弗吉尼亚理工大学(Virginia Tech)的教授们运用生成式人工智能技术来确定一个地区的步行友好性,方法是使用人工智能工具分析图像中的建筑环境特征,如长椅、路灯和人行道。如果人工智能能够完成这些简单但劳动密集型的任务,城市规划者或许就能腾出时间来解决城市面临的更复杂的问题,如经济适用房、气候变化和办公行业的衰退。

将生成式人工智能整合到城市规划数字化进程中,即所谓的“PlanTech”,同样面临挑战,问题仍然存在:人工智能能否创造足够的价值,以证明其在城市规划中的应用是正当的?

无论是从经济还是环境角度来看,人工智能基础设施的建设和运行成本高昂。如果生成式人工智能只能解决小问题,无法解决重大问题,那么市政当局可能会对这些投资的合理性提出质疑。此外,考虑到该领域在不平等方面漫长而复杂的历史,城市规划者可能会特别敏感,担心有偏见的训练数据会训练出有偏见的生成式人工智能模型。

以前的技术进步是否对城市产生积极影响?

尽管PlanTech带来了显著的效率提升,但有时仍被视为“酷炫”却华而不实的应用。虽然这些应用在某些方面改善了城市生活,但却无法解决实际问题,如公共卫生危机和日益飙升的住房成本。

21世纪初,“智慧城市”概念的兴起标志着首次尝试将尖端技术大规模融入现代城市规划。智慧城市通过运用信息和通信技术(ICT),例如三维成像和信息建模,来提升城市服务质量。以旧金山为例,该市实施了智能废物管理系统,通过传感器和联网设备来优化废物的收集与处理流程。

尽管智慧城市通过技术提升了效率,但目前尚不清楚这能否转化为居民生活质量的提升。在疫情之后,学者们期望了解最佳智慧城市是否在疫情遏制方面表现更为出色。他们考察了那些在环境、流动性、城市规划和交通等“智慧城市”指标上排名靠前的城市,得出的结论是,排名靠前的城市并不一定能更有效地应对疫情。

还有人担心,智慧城市对建模和算法的关注可能会忽视城市生活中那些难以量化的方面。

城市规划领域最近一波技术革新涉及一种名为“数字孪生”的概念,它指的是城市区域的实时虚拟模型,范围从一栋建筑到整个城市。与美国航空航天局(NASA)使用航天飞行数字模拟器来训练宇航员和任务控制人员类似,这些数字孪生模拟使得城市规划者能够在设计和土地使用计划实施之前对其进行测试。

市政当局能够运用数字孪生技术,探索自然灾害(例如百年一遇的洪水或极端高温事件)的潜在影响,并据此制定应对策略。借助数字孪生模型,他们能够针对新建建筑或区域进行建模,进而在实际开发之前测试其在多种不同场景下的效果。

尽管数字孪生技术有望预测未来的挑战,并助力规划者制定出更具韧性的解决方案,但在推广数字孪生技术的过程中仍面临一些障碍。其中最具挑战性的是开发和维护这些模拟困难重重。这些模拟往往需要大量数据,而数据来源广泛,存储格式不一定兼容。

模拟的区域越大、越复杂,整合所有必要数据的难度就越大,更不必提及保持数据持续更新了。此外,与智慧城市一样,人们始终担心并非所有城市景观要素都可以量化并输入模型。

对人力资本的需求

随着人工智能的进步,预计城市规划领域的先进工具市场将会扩大。尽管这些技术能够辅助城市规划者,但不太可能取代他们。

不要将城市规划者与技术官僚混为一谈。城市规划者的任务是改善城市居民的生活,这要求他们采取多学科融合的方法论,不仅涉及土地使用决策制定的具体细节,还涵盖社会科学、伦理道德和公共卫生。展望未来,规划行业可能会面临更多的技术变革。为了确保相关性,规划行业必须拥抱复杂性,而非仅仅追求那些触手可及的短期效率提升。(财富中文网)

本文为《财富》头脑风暴健康大会赞助商约翰斯·霍普金斯大学供稿。塞迪纳·法尔(Seydina Fall)担任该校凯瑞商学院房地产与基础设施硕士项目学术主任。

译者:中慧言-王芳

预计到2050年,全球70%的人口将居住在城市,这一庞大的数字使城市规划更具挑战性。因此,规划者寻求技术的帮助,尤其是最近兴起的生成式人工智能,以帮助设计、分析和开发那些拥挤不堪的地区。

技术狂热者设想,城市规划者可以运用人工智能技术来研究开发提案、分析拟议的分区变更、制定全新的城市总体规划或优化现有规划。

在最近的一个测试案例中,弗吉尼亚理工大学(Virginia Tech)的教授们运用生成式人工智能技术来确定一个地区的步行友好性,方法是使用人工智能工具分析图像中的建筑环境特征,如长椅、路灯和人行道。如果人工智能能够完成这些简单但劳动密集型的任务,城市规划者或许就能腾出时间来解决城市面临的更复杂的问题,如经济适用房、气候变化和办公行业的衰退。

将生成式人工智能整合到城市规划数字化进程中,即所谓的“PlanTech”,同样面临挑战,问题仍然存在:人工智能能否创造足够的价值,以证明其在城市规划中的应用是正当的?

无论是从经济还是环境角度来看,人工智能基础设施的建设和运行成本高昂。如果生成式人工智能只能解决小问题,无法解决重大问题,那么市政当局可能会对这些投资的合理性提出质疑。此外,考虑到该领域在不平等方面漫长而复杂的历史,城市规划者可能会特别敏感,担心有偏见的训练数据会训练出有偏见的生成式人工智能模型。

以前的技术进步是否对城市产生积极影响?

尽管PlanTech带来了显著的效率提升,但有时仍被视为“酷炫”却华而不实的应用。虽然这些应用在某些方面改善了城市生活,但却无法解决实际问题,如公共卫生危机和日益飙升的住房成本。

21世纪初,“智慧城市”概念的兴起标志着首次尝试将尖端技术大规模融入现代城市规划。智慧城市通过运用信息和通信技术(ICT),例如三维成像和信息建模,来提升城市服务质量。以旧金山为例,该市实施了智能废物管理系统,通过传感器和联网设备来优化废物的收集与处理流程。

尽管智慧城市通过技术提升了效率,但目前尚不清楚这能否转化为居民生活质量的提升。在疫情之后,学者们期望了解最佳智慧城市是否在疫情遏制方面表现更为出色。他们考察了那些在环境、流动性、城市规划和交通等“智慧城市”指标上排名靠前的城市,得出的结论是,排名靠前的城市并不一定能更有效地应对疫情。

还有人担心,智慧城市对建模和算法的关注可能会忽视城市生活中那些难以量化的方面。

城市规划领域最近一波技术革新涉及一种名为“数字孪生”的概念,它指的是城市区域的实时虚拟模型,范围从一栋建筑到整个城市。与美国航空航天局(NASA)使用航天飞行数字模拟器来训练宇航员和任务控制人员类似,这些数字孪生模拟使得城市规划者能够在设计和土地使用计划实施之前对其进行测试。

市政当局能够运用数字孪生技术,探索自然灾害(例如百年一遇的洪水或极端高温事件)的潜在影响,并据此制定应对策略。借助数字孪生模型,他们能够针对新建建筑或区域进行建模,进而在实际开发之前测试其在多种不同场景下的效果。

尽管数字孪生技术有望预测未来的挑战,并助力规划者制定出更具韧性的解决方案,但在推广数字孪生技术的过程中仍面临一些障碍。其中最具挑战性的是开发和维护这些模拟困难重重。这些模拟往往需要大量数据,而数据来源广泛,存储格式不一定兼容。

模拟的区域越大、越复杂,整合所有必要数据的难度就越大,更不必提及保持数据持续更新了。此外,与智慧城市一样,人们始终担心并非所有城市景观要素都可以量化并输入模型。

对人力资本的需求

随着人工智能的进步,预计城市规划领域的先进工具市场将会扩大。尽管这些技术能够辅助城市规划者,但不太可能取代他们。

不要将城市规划者与技术官僚混为一谈。城市规划者的任务是改善城市居民的生活,这要求他们采取多学科融合的方法论,不仅涉及土地使用决策制定的具体细节,还涵盖社会科学、伦理道德和公共卫生。展望未来,规划行业可能会面临更多的技术变革。为了确保相关性,规划行业必须拥抱复杂性,而非仅仅追求那些触手可及的短期效率提升。(财富中文网)

本文为《财富》头脑风暴健康大会赞助商约翰斯·霍普金斯大学供稿。塞迪纳·法尔(Seydina Fall)担任该校凯瑞商学院房地产与基础设施硕士项目学术主任。

译者:中慧言-王芳

Seventy percent of the world’s population will live in cities by 2050, and that huge number makes urban planning more challenging. As a result, planners have turned to technology, most recently generative AI, to help design, analyze, and develop overcrowded areas.

Enthusiasts envision urban planners using AI to review development proposals, analyze proposed zoning changes, and develop new city master plans or optimize existing ones.

In one recent test case, Virginia Tech professors used generative AI to determine the walkability of an area by using AI tools to analyze images for built environment features like benches, streetlights, and sidewalks. To the extent AI can take over such simple, but labor-intensive tasks, urban planners would perhaps have increased bandwidth to work on more complex problems facing cities—problems such as affordable housing, climate change, and the declining office sector.

The integration of generative AI into the digitalization of urban planning, also known as “PlanTech,” is not without its challenges, though, and the question remains: can AI offer enough value to justify its use?

The cost of building and running AI infrastructure is enormous, both in monetary and environmental terms. If generative AI can only solve the small problems, not the big ones, then municipalities may question whether these expenditures are worth it. Also, in light of their field’s long, tangled history when it comes to inequality, urban planners may be particularly sensitive to concerns about biased training data leading to biased generative AI models.

Have previous technological advancements improved cities?

Despite the tremendous efficiency gains PlanTech has achieved, it is sometimes perceived as part of a constellation of “cool” but gimmicky applications that improve certain aspects of urban life but fail to solve real problems, such as public health crises and burgeoning housing costs.

One of the first widespread attempts to integrate cutting-edge technologies into modern urban planning was the rise of “smart cities” in the early 2000s. Smart cities utilize information and communication technology (ICT), such as 3D imaging and information modeling, to improve the quality of urban services. San Francisco, for example, has implemented a smart waste management system that uses sensors and internet-connected devices to optimize the collection and disposal of waste.

While smart cities’ use of technology has led to efficiency gains, it is unclear that this translates into an improved quality of life for their citizens. After the COVID-19 pandemic, academics wanted to find out if the smartest cities performed better in managing the pandemic. They looked at municipalities that ranked high on “smart city” indicators such as the environment, mobility, urban planning, and transportation, and concluded that the highest ranked cities did not necessarily manage the pandemic better.

There are also concerns that the focus of smart cities on modeling and algorithms may disadvantage those aspects of urban life that are not easy to measure quantitatively.

A more recent wave of technological innovation in urban planning involves a concept called “digital twins,” which are real-time virtual models of urban areas, ranging from a building to an entire city. Much like how NASA uses digital spacecraft simulators to train astronauts and mission control crews, these digital twin simulations allow urban planners test their designs and land use plans before they are implemented.

Municipalities can use digital twins to explore the impact of natural disasters, like a 100-year flood or extreme heat events, and develop a response. Using a digital twin, it is possible to model new buildings or regions and test them under many different scenarios before the actual development is built.

While digital twins hold the promise of predicting future challenges and enabling planners to develop resilient solutions, some obstacles stand in the way of widespread adoption. Among the most challenging is the difficulty of developing and maintaining a digital twin simulation. These simulations often require a vast amount of data, which is drawn from a wide range of sources and stored in formats that are not necessarily compatible.

The larger and more complex the region being simulated, the more challenging it is to integrate all of the necessary data, much less keep it up-to-date. In addition, as with smart cities, there is always the concern that not all facets of the urban landscape can be quantified and plugged into a model.

The need for human capital

The market for advanced technological tools for urban planning is expected to grow, as it has with the development of AI. While these technologies may assist urban planners, they are unlikely to replace them.

Urban planners are not be confused with technocrats. Planners are tasked with improving the lives of city dwellers, which requires a multidisciplinary approach that encompasses not only the nuts and bolts of making land use decisions, but also social sciences, ethics, and public health. The planning profession is likely to face more technological disruptions in the future. To stay relevant, it needs to embrace complexity and not settle for low hanging short-term efficiency gains.

This commentary is from Johns Hopkins University, a sponsor of Fortune Brainstorm Health. Seydina Fall is the academic program director of the MS in Real Estate and Infrastructure program at Johns Hopkins Carey Business School.

财富中文网所刊载内容之知识产权为财富媒体知识产权有限公司及/或相关权利人专属所有或持有。未经许可,禁止进行转载、摘编、复制及建立镜像等任何使用。
0条Plus
精彩评论
评论

撰写或查看更多评论

请打开财富Plus APP

前往打开