• 亚马逊云科技(Amazon Web Services,AWS)推出了首款量子计算芯片Ocelot,旨在解决该领域面临的最大障碍之一:纠错。AWS称这款芯片可将量子纠错成本降低90%,这一重大突破将加快实用、容错量子计算机的开发进程。
随着各大科技巨头加速在量子计算领域取得突破,亚马逊云科技宣布推出首款量子计算芯片Ocelot。
这款芯片致力于解决量子纠错这一基础性难题,AWS称其可将纠错成本降低多达90%,为构建超越现有系统问题解决能力的实用量子计算机扫除关键障碍。
这款小型原型芯片主要用于验证AWS量子纠错架构的有效性。芯片采用双硅微芯片集成设计,每块面积约为一平方厘米。
该公司表示这是容错量子计算机研发竞赛中的重要进展。
量子计算有望通过解决传统计算机难以处理的复杂问题,彻底改变从制药到天气预报等多个行业。
近几个月来,谷歌(Google)、微软(Microsoft)和IBM等科技巨头相继宣布在量子计算研发方面取得突破。
谷歌推出Willow芯片,IBM成功研发包含超1,000个量子比特的量子处理器芯片。微软发布Majorana 1芯片,声称将把量子计算机解决有意义的工业级问题的时间从数十年缩短至数年。
量子纠错
量子计算机对环境中的微小变化极度敏感,如震动、热量甚至Wi-Fi网络和手机的电磁干扰等都会对其产生影响,这种“噪声”容易干扰量子比特数据,导致计算错误。为解决这个问题,并确保量子计算机的无差错计算,科学家依赖一种名为量子纠错的技术,这项技术至少到目前为止成本高昂。
AWS表示Ocelot芯片将纠错功能作为底层设计原则,而不是后续添加的功能。这款芯片采用“猫量子比特”,这类特殊量子比特的命名源于“薛定谔的猫”思想实验。
AWS量子硬件负责人奥斯卡·佩因特表示:“要制造实用量子计算机,量子纠错必须先行。这就是我们开发Ocelot芯片的出发点。我们并非在现有架构上增加纠错功能,而是以纠错为最高要求选择量子比特和架构。”
佩因特表示,他的团队估计,“相比传统量子纠错方案,构建具有变革性社会影响力的成熟量子计算机所需的资源可减少90%”。
猫量子比特通过从本质上抑制特定类型错误,显著降低量子纠错的复杂度和资源需求。AWS估计,与传统方法相比,Ocelot的架构能够将纠错所需资源减少5到10倍。
AWS应用科学总监费尔南多·布兰当指出:“量子纠错有赖于物理量子比特的持续改进,我们在制造芯片时不能只依靠传统方法。我们必须开发缺陷更少的新材料和更强大的制造工艺。”
未来展望
目前Ocelot仍属实验室原型,AWS计划持续优化和扩展系统。
佩因特表示:“我们认为系统扩展还要经过多个阶段。这是一个难题。我们需要持续投入基础研究,同时吸收学术界的成果。“
“我们当前的任务是在量子计算领域保持全栈创新,持续验证架构合理性,将研究成果纳入工程实践,形成持续改进和扩展的飞轮效应。”(财富中文网)
译者:刘进龙
审校:汪皓
亚马逊云科技宣布推出首款量子计算芯片。CREDIT: AWS
• 亚马逊云科技(Amazon Web Services,AWS)推出了首款量子计算芯片Ocelot,旨在解决该领域面临的最大障碍之一:纠错。AWS称这款芯片可将量子纠错成本降低90%,这一重大突破将加快实用、容错量子计算机的开发进程。
随着各大科技巨头加速在量子计算领域取得突破,亚马逊云科技宣布推出首款量子计算芯片Ocelot。
这款芯片致力于解决量子纠错这一基础性难题,AWS称其可将纠错成本降低多达90%,为构建超越现有系统问题解决能力的实用量子计算机扫除关键障碍。
这款小型原型芯片主要用于验证AWS量子纠错架构的有效性。芯片采用双硅微芯片集成设计,每块面积约为一平方厘米。
该公司表示这是容错量子计算机研发竞赛中的重要进展。
量子计算有望通过解决传统计算机难以处理的复杂问题,彻底改变从制药到天气预报等多个行业。
近几个月来,谷歌(Google)、微软(Microsoft)和IBM等科技巨头相继宣布在量子计算研发方面取得突破。
谷歌推出Willow芯片,IBM成功研发包含超1,000个量子比特的量子处理器芯片。微软发布Majorana 1芯片,声称将把量子计算机解决有意义的工业级问题的时间从数十年缩短至数年。
量子纠错
量子计算机对环境中的微小变化极度敏感,如震动、热量甚至Wi-Fi网络和手机的电磁干扰等都会对其产生影响,这种“噪声”容易干扰量子比特数据,导致计算错误。为解决这个问题,并确保量子计算机的无差错计算,科学家依赖一种名为量子纠错的技术,这项技术至少到目前为止成本高昂。
AWS表示Ocelot芯片将纠错功能作为底层设计原则,而不是后续添加的功能。这款芯片采用“猫量子比特”,这类特殊量子比特的命名源于“薛定谔的猫”思想实验。
AWS量子硬件负责人奥斯卡·佩因特表示:“要制造实用量子计算机,量子纠错必须先行。这就是我们开发Ocelot芯片的出发点。我们并非在现有架构上增加纠错功能,而是以纠错为最高要求选择量子比特和架构。”
佩因特表示,他的团队估计,“相比传统量子纠错方案,构建具有变革性社会影响力的成熟量子计算机所需的资源可减少90%”。
猫量子比特通过从本质上抑制特定类型错误,显著降低量子纠错的复杂度和资源需求。AWS估计,与传统方法相比,Ocelot的架构能够将纠错所需资源减少5到10倍。
AWS应用科学总监费尔南多·布兰当指出:“量子纠错有赖于物理量子比特的持续改进,我们在制造芯片时不能只依靠传统方法。我们必须开发缺陷更少的新材料和更强大的制造工艺。”
未来展望
目前Ocelot仍属实验室原型,AWS计划持续优化和扩展系统。
佩因特表示:“我们认为系统扩展还要经过多个阶段。这是一个难题。我们需要持续投入基础研究,同时吸收学术界的成果。“
“我们当前的任务是在量子计算领域保持全栈创新,持续验证架构合理性,将研究成果纳入工程实践,形成持续改进和扩展的飞轮效应。”(财富中文网)
译者:刘进龙
审校:汪皓
• Amazon Web Services has unveiled Ocelot, its first quantum computing chip, which aims to tackle one of the biggest barriers in the field: error correction. AWS claims the chip could slash the cost of quantum error correction by up to 90%, a breakthrough that could accelerate the race to build practical, fault-tolerant quantum computers.
[hotlink]Amazon[/hotlink] Web Services has announced its first quantum computing chip, Ocelot, as Big Tech companies accelerate breakthroughs in the field.
The chip is designed to improve quantum error correction, a fundamental challenge in the field. AWS says that Ocelot could reduce the cost of error correction by up to 90%, addressing one of the key obstacles to building practical quantum computers capable of solving problems beyond the reach of currently available systems.
The chip is a small-scale prototype, which AWS said is designed to test the effectiveness of the company’s quantum error correction architecture. It consists of two integrated silicon microchips, each measuring approximately one square centimeter.
The company says it’s an important step forward in the race to build fault-tolerant quantum computers.
Quantum computing has the potential to transform multiple industries ranging from pharmaceuticals to weather forecasting by solving complex problems that classical computers cannot efficiently handle.
Big Tech companies, including Google, Microsoft, and IBM, have all announced quantum computing breakthroughs in the last few months.
Google has announced its Willow chip, while IBM announced it had successfully developed a quantum processor chip that consists of more than 1,000 qubits. Microsoft has also announced its Majorana 1 chip, which the company said would accelerate the timeline for quantum computers capable of solving meaningful, industrial-scale problems from decades to just years.
Error correction
Quantum computers are especially sensitive to small changes in their environment—such as vibrations, heat, or even electromagnetic interference from Wi-Fi networks and cell phones—and this “noise” can interfere with qubits and cause computational errors. To solve this problem and ensure that quantum computers perform error-free calculations, scientists rely on a process called quantum error correction, which has been hugely expensive—at least until now.
AWS said Ocelot was designed with error correction as a foundational principle rather than a later addition. The chip utilizes a specialized type of qubit known as a “cat qubit,” which gets its name from the Schrödinger’s cat thought experiment.
“We believe that if we’re going to make practical quantum computers, quantum error correction needs to come first,” said Oskar Painter, AWS’s head of quantum hardware. “That’s what we’ve done with Ocelot. We didn’t take an existing architecture and then try to incorporate error correction afterward. We selected our qubit and architecture with quantum error correction as the top requirement.”
Painter said his team estimates that scaling Ocelot to a “fully-fledged quantum computer capable of transformative societal impact would require as little as one-tenth of the resources associated with standard quantum error correcting approaches.”
Cat qubits are engineered to intrinsically suppress certain types of errors, reducing the complexity and resource demands of quantum error correction. AWS estimates that Ocelot’s architecture can reduce the resources required for error correction by a factor of five to 10 compared with conventional approaches.
“Quantum error correction relies on continued improvements in the physical qubits. We can’t just rely on the conventional approaches to how we fabricate chips,” Fernando Brandao, AWS director of applied science, said. “We have to incorporate new materials, with fewer defects, and develop more robust fabrication processes.”
Future implications
Ocelot is still a research laboratory prototype, but AWS intends to refine and scale the system.
“We believe we have several more stages of scaling to go through. It’s a very hard problem to tackle, and we will need to continue to invest in basic research, while staying connected to, and learning from, important work being done in academia,” Painter said.
“Right now, our task is to keep innovating across the quantum computing stack, to keep examining whether we’re using the right architecture, and to incorporate these learnings into our engineering efforts. It’s a flywheel of continuous improvement and scaling.”