首页 500强 活动 榜单 商业 科技 商潮 专题 品牌中心
杂志订阅

AI人才争夺战内幕:扎克伯格也亲自出马

Sharon Goldman
2025-03-20

随着人工智能热潮席卷科技行业并重塑商业战略,各方竞相锁定那些具备梦寐以求的技术技能和专业知识的专家。

文本设置
小号
默认
大号
Plus(0条)

2024年12月,前OpenAI首席技术官米拉·穆拉蒂(Mira Murati)。图片来源:Kimberly White—Getty Images for WIRED

去年,OpenAI首席技术官米拉·穆拉蒂离职创办了一家初创公司,这完全符合硅谷备受推崇的创业剧本。数月后,包括联合创始人约翰·舒尔曼(John Schulman)在内的19名OpenAI现任和前任员工宣布加入穆拉蒂的Thinking Machines,这生动展现了硅谷的另一传统:每一波新技术浪潮都会伴随着激烈的人才争夺战。

随着人工智能热潮席卷科技行业并重塑商业战略,各方竞相锁定那些具备梦寐以求的技术技能和专业知识的专家。过去两年间,各企业如同在战场上追逐珍稀资源般寻觅顶尖人工智能研究人员和工程师,像穆拉蒂这样从前雇主那里挖走人才的招聘行动,是高风险运作的典型例子。最为激烈的争夺集中在一小部分人工智能研究科学家身上——据《财富》杂志采访的几位业内人士估计,全球具备构建当今最先进的大型语言模型资质的人才不到1000人。

风险投资公司门罗风投(Menlo Ventures)的合伙人提姆·堤利(Tim Tully)表示,D轮融资阶段的初创企业给予这些科学家的股票奖励可能介于200万至400万美元之间。堤利说:“这在四年前我招募研究科学家时是难以想象的。”他在10月份进行的人工智能人才调查发现,从事基础人工智能研究和理论推进工作的人工智能研究科学家手握进入顶级公司的黄金入场券。

据报道,像Meta的马克·扎克伯格这样的首席执行官都亲自出马,招揽人工智能领域的顶尖人才。而像兴盛资本(Thrive Capital)的约书亚·库什纳(Joshua Kushner)这样有影响力的风投投资者则不得不采取防御措施,力图说服OpenAI员工相信留任原公司在经济上更为有利。(库什纳未回应置评请求。)为了与大型上市公司竞争,初创公司定期举办与私人买家的套现活动,使员工能够更快变现所持部分股权。

除了经济激励之外,与业界领袖的私人关系以及对人工智能不同理念的坚持,为硅谷最新一轮人才争夺战披上了一层部落竞争的色彩。从开源到人工智能安全保障,不同参与者所秉持的价值观及其领导者的声誉,重塑了招聘准则,并催生了一系列资金雄厚的初创公司,这些公司由穆拉蒂、她在OpenAI的前同事伊尔亚·苏茨克维(Ilya Sutskever)以及被誉为“人工智能教母”的斯坦福大学李飞飞等备受尊崇的创始人领导。

人工智能人才供应不足与大型科技公司和初创公司对人工智能人才的迫切需求之间的不平衡,给迅猛发展的人工智能行业带来了紧迫挑战。随着科技公司和投资者向芯片和数据中心投入数百亿美元,为人工智能服务提供动力,并寻找数据和能源来训练更强大的人工智能模型,能否吸引这一小部分人才成为竞争中难以预料但可能至关重要的变数。

更多资金流动,更少自助餐厅

上一次硅谷为工程人才展开的争夺战发生在2010年代,当时谷歌和脸书(Facebook)展开了一场全面的员工福利军备竞赛,双方都试图在公司园区内的寿司吧、咖啡师服务、其他免费餐厅、现场按摩师以及健身和武术课程等方面超越对手。

十五年过去了,成千上万人被裁员,如今的人才争夺战已不再以比拼自助餐厅菜单为手段。如今备受追捧的人工智能精英更为稀缺,且更具专业性,各公司正通过其他方式展开激烈角逐。

虽然公司使命和同事团队一直是科技行业招聘的重要吸引力,但在人工智能领域,从业者热衷于讨论从通用人工智能(AGI)到开源模型等各类话题,因此寻觅志同道合的人才至关重要。

昔日场景:Meta园区内的烧烤餐厅,是2010年代硅谷上一次大规模人才争夺战中,科技公司用来吸引工程师的众多福利之一。图片来源:Kim Kulish/Corbis via Getty Images

Anthropic是最早从OpenAI分离出来的人工智能初创公司之一,其诞生源于创始人对OpenAI在技术安全性和商业化方面的做法存在异议。许多离开OpenAI加入穆拉蒂的Thinking Machines的人,是出于对这位出生于阿尔巴尼亚的创始人的忠诚(或许也因那里据传提供的股票期权几乎无锁定期且行权价近乎为零)。

人工智能视频初创公司Runway的联合创始人兼首席执行官克里斯托瓦尔·巴伦苏埃拉(Cristobal Valenzuela)强调了文化和使命契合的重要性。他说:“我们的专长,以及吸纳的自不同研究实验室的人才,都是非常关注艺术与科学交叉领域的人。”他还补充称,在少数情况下,那些被其他公司挖走的候选人后来又回到了Runway,因为他们意识到这才是正确的选择。

风险投资公司Asymmetric的管理合伙人罗布·比德曼(Rob Biederman)表示:“顶尖人才希望解决重大问题并能产生重大影响。”他说,这对初创公司而言往往是与老牌科技巨头竞争的一大优势:“这并非针对苹果,我只是好奇,在那样的组织架构下,你能否有机会产生重大影响?”

苹果未回应就这一问题发表看法的请求。该公司似乎在吸引人工智能人才方面取得了成功——至少在从科技巨头竞争对手谷歌挖人这方面是如此。自2018年以来,苹果至少从谷歌挖走了36名人工智能专家,其中包括伊恩·古德费罗(Ian Goodfellow),他曾在苹果工作过一段时间,然后于2022年重返谷歌,在DeepMind担任研究科学家。而谷歌在这场竞争中也竭力扩充人才队伍。诺姆·沙泽尔(Noam Shazeer)是人工智能行业开创性论文《Transformer》的合著者之一,他在2021年辞去谷歌软件工程师的职位,创办了CharacterAI。在2024年,谷歌以20亿美元的“人才收购”交易将他及数名团队成员重新招致麾下。

随着越来越多的人工智能初创公司加入这场竞争,人才供需失衡的情况愈发严重。除了像OpenAI、谷歌、Meta、Anthropic和亚马逊这样的大型人工智能模型公司外,还有数十家资金雄厚的后期人工智能初创公司,如Databricks、Perplexity、Glean、Harvey和Writer,以及像埃隆·马斯克的X.AI和苏茨克维的Safe Superintelligence等热门新公司。

为了与大公司竞争,私营初创公司为员工提供机会,将其股权的部分账面价值变现。Thomvest Ventures的董事总经理乌梅什·帕德瓦尔(Umesh Padval)表示,OpenAI在这方面尤为活跃,多次发起收购要约,使员工能够将部分股份出售给私人投资者。通常情况下,初创公司或私营公司员工只能等到公司首次公开募股(IPO)或被收购时才能实现股权变现。

帕德瓦尔说:“这很不寻常。”他还补充称,如今其他人工智能公司也开始采用同样的策略,通过提高股权激励的吸引力在招聘市场中保持竞争力。

即便是初级和中级人工智能人才,现金薪酬也在飙升。曾在Meta、帕兰提尔科技(Palantir)、谷歌和亚马逊内部从事人工智能人才招聘工作的加勒特·金特里(Garett Gentry)表示:“就众多通用人工智能和机器人领域的初创公司提供的薪酬而言,以往基本薪资可能是25万美元,但如今竞争更为激烈了——我看到基本薪资35万美元甚至更高的薪资报价,这大致与FAANG(指脸书、亚马逊、苹果、网飞和谷歌)实验室中拥有博士学位且有五年工作经验的人的薪资水平相当。”

斯坦福的“人工智能教母”李飞飞与前学生联合创办了一家初创公司。图片来源:Kimberly White/Getty Images for WIRED

学术界人士的崛起

如今最抢手的人工智能研究科学家通常来自学术界,主要是计算机科学、数学、统计学或神经科学领域的博士。门罗风投的堤利表示,过去在科技公司里,他们的薪资往往并非最高,占据薪资金字塔顶端的是负责产品交付的软件工程师。

如今,情况发生了变化,研究科学家成了行业焦点。随着科技公司资助高校的人工智能研究,并且近期以高薪吸引博士及其团队加盟,这些科学家从学术界进入科技行业的道路已然铺就。

金特里说:“你可以想象一下,加州大学伯克利分校的资深学者携其众多学生加入了像Databricks这样的湾区科技公司。”斯坦福大学教授李飞飞近期与前学生贾斯汀·约翰逊(Justin Johnson)联合创办了人工智能初创公司World Labs,约翰逊还引荐了另两位创始团队成员:曾在亚马逊和Meta现实实验室工作的克里斯托夫·拉斯纳(Christoph Lassner),以及在谷歌担任资深研究科学家期间研发出名为NeRF强大技术的本·米尔登霍尔(Ben Mildenhall)。

金特里在一封电子邮件中表示:“除了博士生导师式的指导或学术领导关系外,人工智能/科学研究在诸多层面本质上都具有社交属性。”他描述了志趣相投的研究人员聚在一起的倾向,“虽然科学家独立开展实验,但更广泛的研究环境从根本上来说是协作性的:同行评审期刊、与更广泛的科学界分享/验证想法、追求社会影响力,以及更广泛的伦理背景。”

这一理念对那些倾向于保密的科技公司来说可能是个挑战。尽管包括OpenAI和Anthropic在内的许多人工智能公司允许员工发表有关人工智能安全等主题的研究成果并在会议上展示,但由于对竞争和知识产权的担忧,与人工智能模型内部运作相关的研究成果发布通常会受到限制。Meta试图将这种情况转化为自身优势。Meta首席科学家、Meta基础人工智能研究(FAIR)实验室创始人杨立昆(Yann LeCun)去年在接受《财富》杂志采访时指出,该团队广泛且公开地发表研究成果,这是吸引科学家加入Meta的“一个重要理由”。

杨立昆表示:“如果你告诉科学家‘来为我们工作,但不能谈论你所做的事情’……他们会感觉自己仿佛被困于‘黄金牢笼’中,其研究声誉也将随之消逝。”

近期一个很好的例子是DeepMind研究员尼古拉斯·卡利尼(Nicholas Carlini),他上周宣布将加入Anthropic——但只承诺效力一年。在2018年获得博士学位后,他加入了谷歌大脑项目(Google Brain),他在上周的一篇职业动态更新博文中表示,这是他“梦想中的工作”。然而,他透露,在过去几年里,论文获准在期刊上发表的过程“变得比我刚加入时困难得多”,并补充称,他能够发表论文的唯一途径是“我甘愿冒着违规风险,强行推进”。

招募并留住人工智能人才至关重要

Runway首席执行官巴伦苏埃拉表示,他投入大量时间进行人才招募。“我仍然会面试每位候选人,并主动联络那些我最希望共事的优秀人才。”他补充道,有时招募理想人才需耗时数年。他说:“今天早上我刚面试了一位我们已关注一年半、来自大型研究实验室的候选人。我们正努力敲定这件事,希望能如愿以偿。”

风险投资公司也深度参与到人才招募中,其人才团队负责建立人脉关系并进行面试。比德曼表示,他努力构建一个持续的人才输送渠道。他说:“作为一名风险投资人,你的核心职责几乎等同于人才猎寻。”

Runway首席执行官克里斯托瓦尔·巴伦苏埃拉表示,招募人才至关重要。图片来源:Kyle Grillot/Bloomberg via Getty Images

金特里专门负责招聘在机器学习、计算机视觉、机器人技术及其他人工智能领域具有专业知识的科学家和工程师。他表示,人才搜寻工作引领他遍访全球,包括参加顶尖学术研究会议。他说:“有固定的会议日程安排。参加这些会议至关重要,这样能洞悉最前沿的技术动态,融入这个社群,洞察最新进展——这些场合正是结识人才的机遇。”

部分人工智能初创公司应对人才争夺战的方式是前往精英人才所在之地,并为他们提供与同胞紧密合作的独特机会。例如,据报道,伊尔亚·苏茨克维的Safe Superintelligence只有20名员工(他们都没有在社交媒体上分享自己的就业状况),其中包括最近在特拉维夫开设的办公室里的六名研究人员。据报道,该公司对以色列员工的招募依赖于朋友与前军队同事间的口口相传,数名新招募的员工来自Google Research特拉维夫研究分部或以色列顶尖学府,凭借他们在数学与物理领域的专长而被录用。

总部位于特拉维夫的人工智能模型初创公司Decart专注于加快人工智能训练,目前估值已达5亿美元。该公司联合创始人兼首席产品官摩西·沙莱夫(Moshe Shalev)表示,当地对顶尖人才的争夺异常激烈,各家公司均在同一批人工智能研究人员中争抢人才。他解释道,以色列正努力扩大人才储备,不仅从高校和科技公司招募人才,还从曾在以色列国防军网络安全部门8200部队服役的数学和计算机科学专家中招募。“我们虽较晚加入这场竞争,但还不算太晚。”他说,并补充道,Decart已在以色列招募了超过18名人工智能研究人员,其中包括前谷歌和苹果的员工。

没有迹象表明人工智能人才争夺战会停止

目前,没有迹象表明对顶尖人工智能人才的争夺会在短期内平息,也没有迹象表明任何一家公司——无论是初创公司还是科技巨头——拥有难以逾越的优势。事实上,随着越来越多初创公司从人工智能领军企业中分离出来,且人工智能技术突破的步伐日益加快,竞争势必愈发白热化。这意味着推动这些技术突破的人才变得更加珍贵。

Asymmetric的比德曼表示:“在科技领域深耕越久,你就会发现人才是唯一的核心要素。领军企业会垄断人才。”(财富中文网)

译者:中慧言-王芳

去年,OpenAI首席技术官米拉·穆拉蒂离职创办了一家初创公司,这完全符合硅谷备受推崇的创业剧本。数月后,包括联合创始人约翰·舒尔曼(John Schulman)在内的19名OpenAI现任和前任员工宣布加入穆拉蒂的Thinking Machines,这生动展现了硅谷的另一传统:每一波新技术浪潮都会伴随着激烈的人才争夺战。

随着人工智能热潮席卷科技行业并重塑商业战略,各方竞相锁定那些具备梦寐以求的技术技能和专业知识的专家。过去两年间,各企业如同在战场上追逐珍稀资源般寻觅顶尖人工智能研究人员和工程师,像穆拉蒂这样从前雇主那里挖走人才的招聘行动,是高风险运作的典型例子。最为激烈的争夺集中在一小部分人工智能研究科学家身上——据《财富》杂志采访的几位业内人士估计,全球具备构建当今最先进的大型语言模型资质的人才不到1000人。

风险投资公司门罗风投(Menlo Ventures)的合伙人提姆·堤利(Tim Tully)表示,D轮融资阶段的初创企业给予这些科学家的股票奖励可能介于200万至400万美元之间。堤利说:“这在四年前我招募研究科学家时是难以想象的。”他在10月份进行的人工智能人才调查发现,从事基础人工智能研究和理论推进工作的人工智能研究科学家手握进入顶级公司的黄金入场券。

据报道,像Meta的马克·扎克伯格这样的首席执行官都亲自出马,招揽人工智能领域的顶尖人才。而像兴盛资本(Thrive Capital)的约书亚·库什纳(Joshua Kushner)这样有影响力的风投投资者则不得不采取防御措施,力图说服OpenAI员工相信留任原公司在经济上更为有利。(库什纳未回应置评请求。)为了与大型上市公司竞争,初创公司定期举办与私人买家的套现活动,使员工能够更快变现所持部分股权。

除了经济激励之外,与业界领袖的私人关系以及对人工智能不同理念的坚持,为硅谷最新一轮人才争夺战披上了一层部落竞争的色彩。从开源到人工智能安全保障,不同参与者所秉持的价值观及其领导者的声誉,重塑了招聘准则,并催生了一系列资金雄厚的初创公司,这些公司由穆拉蒂、她在OpenAI的前同事伊尔亚·苏茨克维(Ilya Sutskever)以及被誉为“人工智能教母”的斯坦福大学李飞飞等备受尊崇的创始人领导。

人工智能人才供应不足与大型科技公司和初创公司对人工智能人才的迫切需求之间的不平衡,给迅猛发展的人工智能行业带来了紧迫挑战。随着科技公司和投资者向芯片和数据中心投入数百亿美元,为人工智能服务提供动力,并寻找数据和能源来训练更强大的人工智能模型,能否吸引这一小部分人才成为竞争中难以预料但可能至关重要的变数。

更多资金流动,更少自助餐厅

上一次硅谷为工程人才展开的争夺战发生在2010年代,当时谷歌和脸书(Facebook)展开了一场全面的员工福利军备竞赛,双方都试图在公司园区内的寿司吧、咖啡师服务、其他免费餐厅、现场按摩师以及健身和武术课程等方面超越对手。

十五年过去了,成千上万人被裁员,如今的人才争夺战已不再以比拼自助餐厅菜单为手段。如今备受追捧的人工智能精英更为稀缺,且更具专业性,各公司正通过其他方式展开激烈角逐。

虽然公司使命和同事团队一直是科技行业招聘的重要吸引力,但在人工智能领域,从业者热衷于讨论从通用人工智能(AGI)到开源模型等各类话题,因此寻觅志同道合的人才至关重要。

Anthropic是最早从OpenAI分离出来的人工智能初创公司之一,其诞生源于创始人对OpenAI在技术安全性和商业化方面的做法存在异议。许多离开OpenAI加入穆拉蒂的Thinking Machines的人,是出于对这位出生于阿尔巴尼亚的创始人的忠诚(或许也因那里据传提供的股票期权几乎无锁定期且行权价近乎为零)。

人工智能视频初创公司Runway的联合创始人兼首席执行官克里斯托瓦尔·巴伦苏埃拉(Cristobal Valenzuela)强调了文化和使命契合的重要性。他说:“我们的专长,以及吸纳的自不同研究实验室的人才,都是非常关注艺术与科学交叉领域的人。”他还补充称,在少数情况下,那些被其他公司挖走的候选人后来又回到了Runway,因为他们意识到这才是正确的选择。

风险投资公司Asymmetric的管理合伙人罗布·比德曼(Rob Biederman)表示:“顶尖人才希望解决重大问题并能产生重大影响。”他说,这对初创公司而言往往是与老牌科技巨头竞争的一大优势:“这并非针对苹果,我只是好奇,在那样的组织架构下,你能否有机会产生重大影响?”

苹果未回应就这一问题发表看法的请求。该公司似乎在吸引人工智能人才方面取得了成功——至少在从科技巨头竞争对手谷歌挖人这方面是如此。自2018年以来,苹果至少从谷歌挖走了36名人工智能专家,其中包括伊恩·古德费罗(Ian Goodfellow),他曾在苹果工作过一段时间,然后于2022年重返谷歌,在DeepMind担任研究科学家。而谷歌在这场竞争中也竭力扩充人才队伍。诺姆·沙泽尔(Noam Shazeer)是人工智能行业开创性论文《Transformer》的合著者之一,他在2021年辞去谷歌软件工程师的职位,创办了CharacterAI。在2024年,谷歌以20亿美元的“人才收购”交易将他及数名团队成员重新招致麾下。

随着越来越多的人工智能初创公司加入这场竞争,人才供需失衡的情况愈发严重。除了像OpenAI、谷歌、Meta、Anthropic和亚马逊这样的大型人工智能模型公司外,还有数十家资金雄厚的后期人工智能初创公司,如Databricks、Perplexity、Glean、Harvey和Writer,以及像埃隆·马斯克的X.AI和苏茨克维的Safe Superintelligence等热门新公司。

为了与大公司竞争,私营初创公司为员工提供机会,将其股权的部分账面价值变现。Thomvest Ventures的董事总经理乌梅什·帕德瓦尔(Umesh Padval)表示,OpenAI在这方面尤为活跃,多次发起收购要约,使员工能够将部分股份出售给私人投资者。通常情况下,初创公司或私营公司员工只能等到公司首次公开募股(IPO)或被收购时才能实现股权变现。

帕德瓦尔说:“这很不寻常。”他还补充称,如今其他人工智能公司也开始采用同样的策略,通过提高股权激励的吸引力在招聘市场中保持竞争力。

即便是初级和中级人工智能人才,现金薪酬也在飙升。曾在Meta、帕兰提尔科技(Palantir)、谷歌和亚马逊内部从事人工智能人才招聘工作的加勒特·金特里(Garett Gentry)表示:“就众多通用人工智能和机器人领域的初创公司提供的薪酬而言,以往基本薪资可能是25万美元,但如今竞争更为激烈了——我看到基本薪资35万美元甚至更高的薪资报价,这大致与FAANG(指脸书、亚马逊、苹果、网飞和谷歌)实验室中拥有博士学位且有五年工作经验的人的薪资水平相当。”

学术界人士的崛起

如今最抢手的人工智能研究科学家通常来自学术界,主要是计算机科学、数学、统计学或神经科学领域的博士。门罗风投的堤利表示,过去在科技公司里,他们的薪资往往并非最高,占据薪资金字塔顶端的是负责产品交付的软件工程师。

如今,情况发生了变化,研究科学家成了行业焦点。随着科技公司资助高校的人工智能研究,并且近期以高薪吸引博士及其团队加盟,这些科学家从学术界进入科技行业的道路已然铺就。

金特里说:“你可以想象一下,加州大学伯克利分校的资深学者携其众多学生加入了像Databricks这样的湾区科技公司。”斯坦福大学教授李飞飞近期与前学生贾斯汀·约翰逊(Justin Johnson)联合创办了人工智能初创公司World Labs,约翰逊还引荐了另两位创始团队成员:曾在亚马逊和Meta现实实验室工作的克里斯托夫·拉斯纳(Christoph Lassner),以及在谷歌担任资深研究科学家期间研发出名为NeRF强大技术的本·米尔登霍尔(Ben Mildenhall)。

金特里在一封电子邮件中表示:“除了博士生导师式的指导或学术领导关系外,人工智能/科学研究在诸多层面本质上都具有社交属性。”他描述了志趣相投的研究人员聚在一起的倾向,“虽然科学家独立开展实验,但更广泛的研究环境从根本上来说是协作性的:同行评审期刊、与更广泛的科学界分享/验证想法、追求社会影响力,以及更广泛的伦理背景。”

这一理念对那些倾向于保密的科技公司来说可能是个挑战。尽管包括OpenAI和Anthropic在内的许多人工智能公司允许员工发表有关人工智能安全等主题的研究成果并在会议上展示,但由于对竞争和知识产权的担忧,与人工智能模型内部运作相关的研究成果发布通常会受到限制。Meta试图将这种情况转化为自身优势。Meta首席科学家、Meta基础人工智能研究(FAIR)实验室创始人杨立昆(Yann LeCun)去年在接受《财富》杂志采访时指出,该团队广泛且公开地发表研究成果,这是吸引科学家加入Meta的“一个重要理由”。

杨立昆表示:“如果你告诉科学家‘来为我们工作,但不能谈论你所做的事情’……他们会感觉自己仿佛被困于‘黄金牢笼’中,其研究声誉也将随之消逝。”

近期一个很好的例子是DeepMind研究员尼古拉斯·卡利尼(Nicholas Carlini),他上周宣布将加入Anthropic——但只承诺效力一年。在2018年获得博士学位后,他加入了谷歌大脑项目(Google Brain),他在上周的一篇职业动态更新博文中表示,这是他“梦想中的工作”。然而,他透露,在过去几年里,论文获准在期刊上发表的过程“变得比我刚加入时困难得多”,并补充称,他能够发表论文的唯一途径是“我甘愿冒着违规风险,强行推进”。

招募并留住人工智能人才至关重要

Runway首席执行官巴伦苏埃拉表示,他投入大量时间进行人才招募。“我仍然会面试每位候选人,并主动联络那些我最希望共事的优秀人才。”他补充道,有时招募理想人才需耗时数年。他说:“今天早上我刚面试了一位我们已关注一年半、来自大型研究实验室的候选人。我们正努力敲定这件事,希望能如愿以偿。”

风险投资公司也深度参与到人才招募中,其人才团队负责建立人脉关系并进行面试。比德曼表示,他努力构建一个持续的人才输送渠道。他说:“作为一名风险投资人,你的核心职责几乎等同于人才猎寻。”

金特里专门负责招聘在机器学习、计算机视觉、机器人技术及其他人工智能领域具有专业知识的科学家和工程师。他表示,人才搜寻工作引领他遍访全球,包括参加顶尖学术研究会议。他说:“有固定的会议日程安排。参加这些会议至关重要,这样能洞悉最前沿的技术动态,融入这个社群,洞察最新进展——这些场合正是结识人才的机遇。”

部分人工智能初创公司应对人才争夺战的方式是前往精英人才所在之地,并为他们提供与同胞紧密合作的独特机会。例如,据报道,伊尔亚·苏茨克维的Safe Superintelligence只有20名员工(他们都没有在社交媒体上分享自己的就业状况),其中包括最近在特拉维夫开设的办公室里的六名研究人员。据报道,该公司对以色列员工的招募依赖于朋友与前军队同事间的口口相传,数名新招募的员工来自Google Research特拉维夫研究分部或以色列顶尖学府,凭借他们在数学与物理领域的专长而被录用。

总部位于特拉维夫的人工智能模型初创公司Decart专注于加快人工智能训练,目前估值已达5亿美元。该公司联合创始人兼首席产品官摩西·沙莱夫(Moshe Shalev)表示,当地对顶尖人才的争夺异常激烈,各家公司均在同一批人工智能研究人员中争抢人才。他解释道,以色列正努力扩大人才储备,不仅从高校和科技公司招募人才,还从曾在以色列国防军网络安全部门8200部队服役的数学和计算机科学专家中招募。“我们虽较晚加入这场竞争,但还不算太晚。”他说,并补充道,Decart已在以色列招募了超过18名人工智能研究人员,其中包括前谷歌和苹果的员工。

没有迹象表明人工智能人才争夺战会停止

目前,没有迹象表明对顶尖人工智能人才的争夺会在短期内平息,也没有迹象表明任何一家公司——无论是初创公司还是科技巨头——拥有难以逾越的优势。事实上,随着越来越多初创公司从人工智能领军企业中分离出来,且人工智能技术突破的步伐日益加快,竞争势必愈发白热化。这意味着推动这些技术突破的人才变得更加珍贵。

Asymmetric的比德曼表示:“在科技领域深耕越久,你就会发现人才是唯一的核心要素。领军企业会垄断人才。”(财富中文网)

译者:中慧言-王芳

When OpenAI Chief Technology Officer Mira Murati left to launch a startup last year, it was a page straight out of Silicon Valley’s acclaimed entrepreneurial playbook. A few months later, when 19 current and former OpenAI employees — including co-founder John Schulman — announced they had joined Murati’s Thinking Machines, it was a vivid display of another Silicon Valley tradition: the heated talent wars that accompany each new wave of technological progress.

As AI-mania sweeps the tech industry and reshapes business strategies, the race is on to lock down the specialists with the coveted technological skills and know-how. Recruitment raids like Murati’s on her former employer epitomize the high-stakes maneuverings that have emerged over the past 24 months as companies track top AI researchers and engineers like prized assets on the battlefield. The most intense battle is over a small pool of AI research scientists — estimated to be fewer than 1,000 individuals worldwide, according to several industry insiders Fortune spoke with — with the qualifications to build today’s most advanced large language models.

Stock grants for these scientists can range between $2 million to $4 million at a Series D startup, says Tim Tully, a partner at venture capital firm Menlo Ventures. “That was unfathomable when I was hiring research scientists four years ago,” said Tully, whose October AI talent survey found that AI research scientists working on foundational AI research and theoretical advancements hold golden tickets into top-tier companies.

CEOs like Meta’s Mark Zuckerberg are rolling up their sleeves to personally woo AI stars, according to reports, and influential VC investors like Thrive Capital’s Joshua Kushner have had to run defense, seeking to persuade OpenAI employees of the economic advantage of staying put. (Kushner did not return requests for comment.) To compete with larger, public companies, startups are regularly holding liquidity events with private buyers that give employees a quicker way to cash out some of the equity showered on them.

Beyond the financial incentives, personal ties to leading figures and adherence to differing philosophies about artificial intelligence have lent a tribal element to Silicon Valley’s latest talent wars. From open source to AI safety and security, the values espoused by the various players, as well as the reputation enjoyed by their leaders, have rewritten the recruiting ground rules and spawned a slew of richly-funded startups led by venerated founders like Murati, her former OpenAI colleague Ilya Sutskever, and Stanford’s Fei-Fei Li, known as the “godmother of AI.”

The imbalance between the scarce supply of AI talent and the acute demand for it at Big Tech companies and startups alike, poses a looming predicament for the fast-growing AI industry. As tech companies and investors pump tens of billions of dollars into chips and data centers to power AI services, and hunt for data and energy to train ever more powerful AI models, the ability to attract a relatively small cohort of people is adding an unpredictable but potentially crucial wrinkle to the competition.

More liquidity, fewer cafeterias

The last time Silicon Valley went to war over engineering talent in the 2010s, Google and Facebook waged an all-out perks arms race, each company seeking to outdo the other with on-campus sushi bars, baristas, and other free restaurants, on-site massage therapists, and fitness and martial arts classes.

Fifteen years and thousands of layoffs later, the fight for talent is no longer being waged with cafeteria menus. Today’s coveted AI hotshots are a smaller, more specialized bunch, and companies are competing for them in other ways.

While the company mission and team of colleagues have always been important draws in tech recruiting, in the field of AI, where practitioners love to debate everything from artificial general intelligence (AGI) to open source models, the right fit is critical.

Anthropic, one of the first AI startups to peel off from OpenAI, was born because of the founders’ disagreement with OpenAI’s approach to safety and commercialization of the technology. Many of those who left OpenAI for Murati’s Thinking Machines were drawn by their loyalty to the Albania-born founder (and perhaps to the stock options that can reportedly be sold with nearly no waiting period and at a near zero strike price).

Cristobal Valenzuela, co-founder and CEO of AI video startup Runway, stressed the importance of the right cultural and mission fit. “Our specialty, and the people we have attracted who have come from different research labs to Runway, are people who care a lot about the intersection of art and science,” he said, adding that in a few cases candidates he had lost to other companies returned to Runway because they realized it was the right choice.

“The most talented people want to work on big problems and move the needle,” said Rob Biederman, managing partner at VC firm Asymmetric. That can often be an advantage to startups and play against the established tech giants, he said: “Nothing against Apple specifically, but I wonder if in the context of that organization, do you have the opportunity to move the needle?”

Apple did not respond to a request to answer that question. The company appears to be having some success luring AI talent – at least when it comes to poaching from Big Tech rival Google. Since 2018, Apple has attracted at least 36 AI specialists from Google, including, for a time, Ian Goodfellow – who then returned to Google in 2022 as a research scientist at DeepMind. For its part, Google has fought hard to bolster its ranks amid the competition. Noam Shazeer, one of the co-authors of the AI industry’s seminal Transformers paper, who left his role as a software engineer at Google in 2021 to found Character AI, was hired back to Google, along with several members of his team, in a 2024 “acqui-hire” deal to the tune of $2 billion.

As more AI startups jump into the fray, the supply and demand imbalance is getting worse. In addition to the big AI model companies like OpenAI, Google, Meta, Anthropic, and Amazon, there are dozens of well-funded late-stage AI startups, including Databricks, Perplexity, Glean, Harvey, and Writer, as well as hot newcomers like Elon Musk’s X.AI and Sutskever’s Safe Superintelligence.

To compete with the big fish, privately held startups are offering employees opportunities to cash in some of the paper wealth tied up in their equity. Umesh Padval, a managing director at Thomvest Ventures, said OpenAI has been particularly active on this front, with multiple tender offers, which give employees the ability to sell some of their shares to private buyers. Typically, employees at startups or private companies have had to wait for an IPO or acquisition to cash out their equity.

“This is unique,” said Padval, adding that now other AI companies have begun adopting the same tactic to stay competitive in hiring by making their equity offers more attractive.

Cash compensation is also soaring, even for junior and mid-level AI talent. “We’ve seen a lot of startup offers in AGI and robotics where it used to be $250K for your base, but it’s more competitive now,” said Garett Gentry, a recruiter of AI talent who has worked in-house at Meta, Palantir, Google and Amazon. “I’m seeing offers of $350,000 for a base or more, which would be roughly equivalent to a PhD plus five years coming from one of the FAANG labs.”

The rise of the academics

The AI research scientists that are now most in demand have historically come from academia—mainly PhDs in computer science, mathematics, statistics, or neuroscience. They were typically not the highest paid within tech companies, said Menlo Ventures’ Tully — the big bucks went to software engineers who shipped product.

Today, the tables have turned, and research scientists are the stars of the show. Their path from academia to the tech industry was laid as tech companies funded AI research at universities and more recently have offered hefty compensation packages to bring PhDs — and their teams — in house.

“You can think of senior academics from UC Berkeley who’ve gone into Bay Area tech companies like Databricks and brought a lot of their students,” said Gentry. When Stanford professor Fei-Fei Li recently co-founded AI startup World Labs with her former student Justin Johnson, he suggested two other founding team members: Christoph Lassner, who had worked at Amazon and Meta’s Reality Labs; and Ben Mildenhall, who had created a powerful technique called NeRF as a senior research scientist at Google.

“Besides the PhD advisor type of mentorship or intellectual leadership relationship, AI/scientific research is inherently social in many ways,” Gentry said in an email, describing the tendency for researchers of a feather to flock together. “While individual scientists undertake experiments, the broader context of research is fundamentally collaborative: peer-reviewed journals, sharing/testing ideas with the broader scientific community, the desire for societal impact, the broader ethical context.”

That ethos can present a challenge for tech companies with a penchant for secrecy. While many AI companies, including OpenAI and Anthropic, allow employees to publish research and present at conferences on topics like AI safety and security, there are typically restrictions around publishing research that relates to the inner workings of the AI models due to concerns about competition and intellectual property. Meta has tried to turn this to its advantage. In an interview with Fortune last year, Yann LeCun, chief scientist at Meta and founder of Meta’s Fundamental AI Research (FAIR) lab, cited the fact that the group publishes its research openly and extensively as “a huge argument” for scientists to join Meta.

“If you tell scientists ‘Come work for us but you can’t talk about what you do’…they sense that they will be in a kind of golden prison [where] they will lose their reputation for research,” LeCun said.

A good recent example of this is Nicholas Carlini, a Google DeepMind researcher who announced last week that he was joining Anthropic – but with only a year-long commitment. He had joined Google Brain after earning his PhD in 2018, which he said in a career update blog post last week was his “dream job.” But he said that the process of getting papers approved for publication in journals over the past several years “has gotten considerably more difficult than when I first joined.” The only way he has been able to publish the papers he has, he added, is “because of my willingness to just force my way through, regardless of what the rules say.”

Recruiting – and retaining AI talent – is key

Runway CEO Valenzuela said he spends most of his time recruiting. “I still interview everyone, I still reach out to the best people that I want to work with,” he said, adding that it sometimes takes a couple of years to hire the talent he wants most. “I just had an interview in the morning with someone who we’ve been studying for a year and a half, from a large research lab,” he said. “We’re trying to close that deal. I hope.”

VC firms are heavily involved in recruiting, with talent teams doing networking and interviews. Biederman said he works hard at building a constant talent pipeline. “As a VC your job is basically being a talent scout,” he said.

Gantry, who specializes in hiring scientists and engineers with expertise in machine learning, computer vision, robotics, and other AI domains, said his scouting takes him around the world, including top academic research conferences. “There’s kind of the standard calendar,” he said. “It’s important to go to those to keep up on the state of the art, to participate in the community, to see what’s new – those are places where you meet people.”

Some AI startups are tackling the talent wars by going where elite talent lives – and offering them the unique opportunity to work closely with their compatriots. Ilya Sutskever’s Safe Superintelligence, for example, reportedly has only 20 employees (none of which share their employment status on social media) including a half-dozen researchers in a recently-opened office in Tel Aviv. According to reports, the Israeli employee search has been conducted by word of mouth between friends and former army colleagues. Several of the recruits come from Google Research’s Tel Aviv outpost or top Israeli universities – and were recruited for their math and physics expertise.

Moshe Shalev, co-founder and chief product officer at Tel Aviv-based AI model startup Decart, which is already valued at $500 million and focuses on speeding up AI training, said that there is a fierce battle for the best local talent – with companies all working to recruit from the same pool of AI researchers. The country is working to feed the pipeline, he explained, by drawing not only from universities and tech companies but from math and computer science experts who have served in Unit 8200, the Israel Defense Force’s cybersecurity unit. “We got into this game a little bit late, but it’s not too late,” he said, adding that Decart has recruited more than 18 AI researchers in Israel, including former Google and Apple employees.

No sign of AI talent battle letting up

At the moment, there are no signs of the battle for elite AI talent letting up anytime soon, or that any one company – startup or tech giant – has an insurmountable advantage. If anything, the competition is only growing fiercer as more startups splinter off from the AI leaders and the pace of AI breakthroughs continues to speed up. That means the brains behind those breakthroughs become even more valuable.

“The more time you spend in tech, the talent is the only thing that matters,” said Asymmetric’s Biederman. “The best companies monopolize talent.”

财富中文网所刊载内容之知识产权为财富媒体知识产权有限公司及/或相关权利人专属所有或持有。未经许可,禁止进行转载、摘编、复制及建立镜像等任何使用。
0条Plus
精彩评论
评论

撰写或查看更多评论

请打开财富Plus APP

前往打开