
从山姆·奥特曼的社交媒体动态不难发现,这位OpenAI的首席执行官心情大好,因为他旗下的公司接连取得令人瞩目的成就。这家由他在2015年共同创立的初创公司刚刚完成了400亿美元的融资,估值达到3000亿美元,这是私营科技公司有史以来规模最大的一轮融资;互联网用户似乎都在发布由OpenAI新推出的GPT-4o图像生成模型生成的吉卜力工作室风格图片;而ChatGPT的周活跃用户数量已从上个月的4亿增加到了5亿。
然而,就在这一系列利好消息传出之际,奥特曼周一透露,OpenAI的战略似乎正在发生重大转变:奥特曼表示,数月后,OpenAI将发布一款开源模型。
此举将标志着OpenAI自2019年发布GPT-2以来,首次推出开源模型,似乎扭转了其近年来向闭源模型转变的趋势。诚然,即将发布的模型并非100%开源;与其他提供“开源”人工智能模型的公司(包括Meta和Mistral)一样,OpenAI并不会开放用于训练该模型的数据访问权限。但依据使用许可,研究人员、开发人员和其他用户能够获取新模型的底层代码和“权重”(决定模型如何处理信息),以便使用、修改或优化模型。
为什么会有这样的转变?
从表面上看,OpenAI转向开源的直接原因可能源自中国,确切而言,是初创公司DeepSeek的出现。该公司在今年1月改变了人工智能领域的传统模式,转向开源。但据《财富》杂志采访的数位人工智能业内人士透露,促使奥特曼转变对开源态度的,实则是一系列更为宽泛且微妙的因素。随着人工智能技术日益渗透至企业运营的方方面面,在众多应用场景中,客户愈发渴求开源模型所具备的灵活性与透明度。而随着OpenAI与其竞争对手之间的性能差距缩小,OpenAI愈发难以证明其100%闭源策略的合理性——奥特曼在1月份承认DeepSeek削弱了OpenAI在人工智能领域的领先地位,并承认在技术开源一事上,OpenAI“与历史发展趋势背道而驰” 。
OpenAI需要在模型之外占据一席之地
Databricks人工智能副总裁纳文·拉奥(Naveen Rao)表示,OpenAI的这一举措更像是承认人工智能领域的格局正在经历变革。价值重心正从模型本身转移到企业用来根据自身特定需求定制模型的应用程序或系统上。尽管在多数情况下,公司可能倾向于采用最先进的大语言模型(LLM),但开源权重模型将使OpenAI能够在客户不愿选用ChatGPT或该公司的开发者应用程序编程接口(API)的场景中占据一席之地。例如,金融公司可能不希望客户数据脱离自身基础设施而转移到外部云端,又或是制造企业可能希望将人工智能嵌入到未接入互联网的工厂硬件中。
拉奥告诉我:“开源并非新鲜事物,它是人工智能应用的重要组成部分。OpenAI希望通过其品牌和模型参与其中。”
弗雷斯特研究公司(Forrester Research)专注于人工智能的高级分析师罗恩·柯伦(Rowan Curran)对此表示赞同,他表示,OpenAI回归开源反映了人工智能生态系统正呈现出日益多元化的发展态势,从美国的OpenAI、谷歌、Anthropic、亚马逊和Meta,到中国的阿里巴巴和DeepSeek、法国的Mistral、加拿大的Cohere和以色列的AI21 Labs。
他说,众多企业公司对开源人工智能模型抱有浓厚兴趣,其原因不仅在于这类模型具备较高的准确性以及出色的问题回答能力,更在于它们所拥有的灵活性。他解释道,人工智能模型的可移植性是关键,这意味着它们能够在不同的云平台上运行,甚至能够在公司自身的数据中心、工作站、笔记本电脑或机器人上运行,而无需受限于某单一供应商 。
柯伦还解释道,发布开源模型可能会提升OpenAI自身服务对企业客户的吸引力。例如,在为客户构建项目时,若需要在客户自有的数据中心或较小的模型中执行部分任务,OpenAI当前的大型模型如GPT-4o等(这些模型主要在云端服务器上运行)便无法直接应用。他说:“这限制了OpenAI提供从云端延伸至终端(无论是笔记本电脑、智能手机、机器人还是自动驾驶汽车)的端到端解决方案的能力。”就如同谷歌针对其大型闭源模型系列Gemini和小型开源模型组Gemma所采取的策略一样,OpenAI也可以打造属于自己的开源解决方案,从而摆脱对第三方开源模型的依赖。
艰难的平衡之举
尽管拉奥并不认为OpenAI此次推出开源模型是对DeepSeek相关发布的强烈回应,但“DeepSeek时刻”确实表明,中国初创企业在人工智能竞赛中已不再处于落后位置。
他说:“我们这个行业中的很多人对此早已心知肚明。”他补充道,如果OpenAI当下不积极面向开源社区布局,“它将失去大量影响力、声誉和社区创新”。
此前,OpenAI曾表示,无法发布开源模型的原因之一在于,担忧中国公司会利用其技术来优化自身模型。今年1月,OpenAI发表声明指出:“我们正与美国政府密切合作,以确保以最恰当的方式保护我们最强大的模型,这一点至关重要。”事实上,虽然DeepSeek并未公布用于训练R1模型的数据,但有迹象表明,它可能使用了OpenAI的o1模型输出结果来启动对自身模型推理能力的训练。
随着OpenAI再次转向开源,它发现自己需竭力调和看似相悖的观点。OpenAI首席全球事务官克里斯·勒汉(Chris Lehane)周一在领英(LinkedIn)上发帖称:“在开源模型与闭源模型之间寻求平衡的必要性日益凸显。开源模型为世界各地的开发者提供了强大的工具,拓展了民主人工智能原则的影响力,助力各地创新者攻克难题、推动经济增长。而闭源模型则融入关键保障措施,防止技术滥用。”
拉奥说:“他们显然是两面派。”他如此解读OpenAI传递出的信息:"[发布开源模型] 依旧存在极大风险,但我们需要借助正在壮大且极具影响力的社区力量。”
OpenAI还面临着商业上的平衡难题:它必须确保发布的开源模型不会与自身的付费模型形成直接竞争。为了吸引那些在人工智能领域颇具影响力的开发者,拉奥建议OpenAI发布一个规模较大但不至于过大的模型。
对Meta的挑衅
倘若OpenAI推行开源模型的战略举动,并非单纯为了回应DeepSeek,那么极有可能是在向另一个强劲的开源竞争对手Meta发起挑战:Meta将于本月底发布其开源模型系列Llama的第四个迭代版本。值得留意的是,除了面向超7亿月活跃用户的服务之外,Llama采用的是开源许可协议,此举意在限制诸如OpenAI这类公司基于该模型进行开发。
奥特曼在X平台上发帖称:“我们不会做任何愚蠢的事,比如声称如果你的服务月活跃用户超过7亿,就无法使用我们的开源模型。”
拉奥表示:“至少在西方,Meta已然成为开源人工智能领域的标杆。如果它们试图在该生态系统中抢占部分影响力,就势必要与Meta展开竞争。”
不过,弗雷斯特研究公司的柯伦表示,抛开奥特曼含糊其辞的言论不谈,没有理由认为OpenAI的开源模型在数据或训练方法等方面会比Meta或Mistral等公司的其他商业开源版本更加透明。
他说:“我预计,相较于其他开源模型,OpenAI的模型将更加不透明和闭源,透明度会低得多。”(财富中文网)
译者:中慧言-王芳
从山姆·奥特曼的社交媒体动态不难发现,这位OpenAI的首席执行官心情大好,因为他旗下的公司接连取得令人瞩目的成就。这家由他在2015年共同创立的初创公司刚刚完成了400亿美元的融资,估值达到3000亿美元,这是私营科技公司有史以来规模最大的一轮融资;互联网用户似乎都在发布由OpenAI新推出的GPT-4o图像生成模型生成的吉卜力工作室风格图片;而ChatGPT的周活跃用户数量已从上个月的4亿增加到了5亿。
然而,就在这一系列利好消息传出之际,奥特曼周一透露,OpenAI的战略似乎正在发生重大转变:奥特曼表示,数月后,OpenAI将发布一款开源模型。
此举将标志着OpenAI自2019年发布GPT-2以来,首次推出开源模型,似乎扭转了其近年来向闭源模型转变的趋势。诚然,即将发布的模型并非100%开源;与其他提供“开源”人工智能模型的公司(包括Meta和Mistral)一样,OpenAI并不会开放用于训练该模型的数据访问权限。但依据使用许可,研究人员、开发人员和其他用户能够获取新模型的底层代码和“权重”(决定模型如何处理信息),以便使用、修改或优化模型。
为什么会有这样的转变?
从表面上看,OpenAI转向开源的直接原因可能源自中国,确切而言,是初创公司DeepSeek的出现。该公司在今年1月改变了人工智能领域的传统模式,转向开源。但据《财富》杂志采访的数位人工智能业内人士透露,促使奥特曼转变对开源态度的,实则是一系列更为宽泛且微妙的因素。随着人工智能技术日益渗透至企业运营的方方面面,在众多应用场景中,客户愈发渴求开源模型所具备的灵活性与透明度。而随着OpenAI与其竞争对手之间的性能差距缩小,OpenAI愈发难以证明其100%闭源策略的合理性——奥特曼在1月份承认DeepSeek削弱了OpenAI在人工智能领域的领先地位,并承认在技术开源一事上,OpenAI“与历史发展趋势背道而驰” 。
OpenAI需要在模型之外占据一席之地
Databricks人工智能副总裁纳文·拉奥(Naveen Rao)表示,OpenAI的这一举措更像是承认人工智能领域的格局正在经历变革。价值重心正从模型本身转移到企业用来根据自身特定需求定制模型的应用程序或系统上。尽管在多数情况下,公司可能倾向于采用最先进的大语言模型(LLM),但开源权重模型将使OpenAI能够在客户不愿选用ChatGPT或该公司的开发者应用程序编程接口(API)的场景中占据一席之地。例如,金融公司可能不希望客户数据脱离自身基础设施而转移到外部云端,又或是制造企业可能希望将人工智能嵌入到未接入互联网的工厂硬件中。
拉奥告诉我:“开源并非新鲜事物,它是人工智能应用的重要组成部分。OpenAI希望通过其品牌和模型参与其中。”
弗雷斯特研究公司(Forrester Research)专注于人工智能的高级分析师罗恩·柯伦(Rowan Curran)对此表示赞同,他表示,OpenAI回归开源反映了人工智能生态系统正呈现出日益多元化的发展态势,从美国的OpenAI、谷歌、Anthropic、亚马逊和Meta,到中国的阿里巴巴和DeepSeek、法国的Mistral、加拿大的Cohere和以色列的AI21 Labs。
他说,众多企业公司对开源人工智能模型抱有浓厚兴趣,其原因不仅在于这类模型具备较高的准确性以及出色的问题回答能力,更在于它们所拥有的灵活性。他解释道,人工智能模型的可移植性是关键,这意味着它们能够在不同的云平台上运行,甚至能够在公司自身的数据中心、工作站、笔记本电脑或机器人上运行,而无需受限于某单一供应商 。
柯伦还解释道,发布开源模型可能会提升OpenAI自身服务对企业客户的吸引力。例如,在为客户构建项目时,若需要在客户自有的数据中心或较小的模型中执行部分任务,OpenAI当前的大型模型如GPT-4o等(这些模型主要在云端服务器上运行)便无法直接应用。他说:“这限制了OpenAI提供从云端延伸至终端(无论是笔记本电脑、智能手机、机器人还是自动驾驶汽车)的端到端解决方案的能力。”就如同谷歌针对其大型闭源模型系列Gemini和小型开源模型组Gemma所采取的策略一样,OpenAI也可以打造属于自己的开源解决方案,从而摆脱对第三方开源模型的依赖。
艰难的平衡之举
尽管拉奥并不认为OpenAI此次推出开源模型是对DeepSeek相关发布的强烈回应,但“DeepSeek时刻”确实表明,中国初创企业在人工智能竞赛中已不再处于落后位置。
他说:“我们这个行业中的很多人对此早已心知肚明。”他补充道,如果OpenAI当下不积极面向开源社区布局,“它将失去大量影响力、声誉和社区创新”。
此前,OpenAI曾表示,无法发布开源模型的原因之一在于,担忧中国公司会利用其技术来优化自身模型。今年1月,OpenAI发表声明指出:“我们正与美国政府密切合作,以确保以最恰当的方式保护我们最强大的模型,这一点至关重要。”事实上,虽然DeepSeek并未公布用于训练R1模型的数据,但有迹象表明,它可能使用了OpenAI的o1模型输出结果来启动对自身模型推理能力的训练。
随着OpenAI再次转向开源,它发现自己需竭力调和看似相悖的观点。OpenAI首席全球事务官克里斯·勒汉(Chris Lehane)周一在领英(LinkedIn)上发帖称:“在开源模型与闭源模型之间寻求平衡的必要性日益凸显。开源模型为世界各地的开发者提供了强大的工具,拓展了民主人工智能原则的影响力,助力各地创新者攻克难题、推动经济增长。而闭源模型则融入关键保障措施,防止技术滥用。”
拉奥说:“他们显然是两面派。”他如此解读OpenAI传递出的信息:"[发布开源模型] 依旧存在极大风险,但我们需要借助正在壮大且极具影响力的社区力量。”
OpenAI还面临着商业上的平衡难题:它必须确保发布的开源模型不会与自身的付费模型形成直接竞争。为了吸引那些在人工智能领域颇具影响力的开发者,拉奥建议OpenAI发布一个规模较大但不至于过大的模型。
对Meta的挑衅
倘若OpenAI推行开源模型的战略举动,并非单纯为了回应DeepSeek,那么极有可能是在向另一个强劲的开源竞争对手Meta发起挑战:Meta将于本月底发布其开源模型系列Llama的第四个迭代版本。值得留意的是,除了面向超7亿月活跃用户的服务之外,Llama采用的是开源许可协议,此举意在限制诸如OpenAI这类公司基于该模型进行开发。
奥特曼在X平台上发帖称:“我们不会做任何愚蠢的事,比如声称如果你的服务月活跃用户超过7亿,就无法使用我们的开源模型。”
拉奥表示:“至少在西方,Meta已然成为开源人工智能领域的标杆。如果它们试图在该生态系统中抢占部分影响力,就势必要与Meta展开竞争。”
不过,弗雷斯特研究公司的柯伦表示,抛开奥特曼含糊其辞的言论不谈,没有理由认为OpenAI的开源模型在数据或训练方法等方面会比Meta或Mistral等公司的其他商业开源版本更加透明。
他说:“我预计,相较于其他开源模型,OpenAI的模型将更加不透明和闭源,透明度会低得多。”(财富中文网)
译者:中慧言-王芳
To judge by his social feeds, OpenAI CEO Sam Altman is a very happy camper, as his company notches one eye-popping success after another. The startup he cofounded in 2015 just raised $40 billion at a $300 billion valuation, the biggest funding round ever by a private tech company; everyone on the internet seems to be posting Studio Ghibli–style images courtesy of OpenAI’s new GPT-4o image-generation model; and ChatGPT now has 500 million weekly users, up from 400 million last month.
And yet, along with all this good news, Altman revealed Monday that OpenAI is making what appears to be a pretty big about-face in its strategy: In several months, Altman said, OpenAI will be releasing an open-source model.
The move would mark the first time the company has released an open model since the launch of GPT-2 in 2019, seemingly reversing the company’s shift to closed models in recent years. Granted, the forthcoming model will not be 100% open; as with other companies offering “open” AI models, including Meta and Mistral, OpenAI will offer no access to the data used to train the model. Still, the usage license would allow researchers, developers, and other users to access the underlying code and “weights” of the new model (which determine how the model processes information) to use, modify, or improve it.
Why the turnaround?
On its surface, the direct cause of OpenAI’s open-source embrace might appear to come from China, specifically, the emergence of startup DeepSeek, which flipped the AI script in favor of open-source in January. But according to several AI industry insiders whom Fortune spoke to, a broader, and more nuanced, set of factors is also likely motivating Altman’s change of heart on open-source. As AI technology makes its way into businesses, customers want the flexibility and transparency of open-source models for many uses. And as the performance gap between OpenAI and its competitors narrows, it’s become more difficult for OpenAI to justify its 100% closed approach—something Altman acknowledged in January when he admitted that DeepSeek had lessened OpenAI’s lead in AI, and that OpenAI has been “on the wrong side of history” when it comes to open-sourcing its technologies.
OpenAI needs a presence beyond the models
Naveen Rao, VP of artificial intelligence at Databricks, said OpenAI’s move is more about an admission that the AI landscape is changing. Value is shifting away from the models themselves to the applications or systems organizations use to customize a model to their specific needs. While there are many situations where a company might want to use a state-of-the-art LLM, an open weights model would allow OpenAI to have a presence in scenarios where customers don’t want to use ChatGPT, for example, or the company’s developer API. For example, a financial company might not want its customer data to leave its own infrastructure and move to an outside cloud, or a manufacturing business might want AI embedded in factory hardware that is not connected to the internet.
“Open-source is not some curiosity, it’s a big part of AI usage,” Rao told me. “OpenAI wants to be a part of that through their brand and their models.”
Rowan Curran, a senior analyst at Forrester Research focused on AI, agreed, saying that OpenAI’s return to open-source speaks to AI’s increasingly diverse ecosystem, from OpenAI, Google, Anthropic, Amazon, and Meta in the U.S. to China’s Alibaba and DeepSeek, France’s Mistral, Canada’s Cohere, and Israel’s AI21 Labs.
He said many enterprise companies are excited about open-source AI models—not just because of how accurate they are or how well they answer questions, but because they’re flexible. The fact that they are portable is key, he explained—meaning they can run on different cloud platforms or even on a company’s own data center, workstation, laptop, or robot, instead of being tied to one provider.
Curran also explained that releasing an open model could make OpenAI’s own services more appealing to its own enterprise customers. If OpenAI is building a project for a customer and needs to run some of its work within the company’s own data center or even smaller models, for example, they can’t do that with OpenAI models like 4o, because those run off cloud-based servers. “That limits their ability to provide an end-to-end solution from the cloud all the way to the edge,” whether that is a laptop, a smartphone, a robot, or a self-driving car, he said. Similar to what Google does with Gemini (its largest closed-model family) and Gemma (its smaller open-model group), OpenAI could have its own open solution without having to look at third-party open-source models.
A tricky balancing act
While Rao does not see an open-source OpenAI model as a big reaction to the DeepSeek releases, the “DeepSeek moment” did show that Chinese startups are no longer behind in the AI race.
“Many of us in the field already knew this,” he said. If OpenAI doesn’t target the open-source community now, he added, “it will lose a lot of influence, goodwill, and community innovation.”
Previously, OpenAI had said that one reason it could not release open models is that Chinese firms would try to use its technology to improve their own models. In January, OpenAI released a statement, noting, “It is critically important that we are working closely with the U.S. government to best protect the most capable models from efforts by adversaries and competitors to take U.S. technology.” And in fact, while DeepSeek did not release the data it used to train its R1 model, there are indications that it may have used outputs from OpenAI’s o1 to kick-start the training of the model’s reasoning abilities.
As OpenAI now tacks toward open-source again, it’s found itself trying to reconcile seemingly contradictory messages. Witness OpenAI chief global affairs officer Chris Lehane’s LinkedIn post on Monday: “For U.S.-led democratic AI to prevail over CCP-led authoritarian AI, it’s becoming increasingly clear that we need to strike a balance between open and closed models. Open-source puts powerful tools into the hands of developers around the world, expanding the reach of democratic AI principles and enabling innovators everywhere to solve hard problems and drive economic growth. Closed models incorporate important safeguards that protect America’s strategic advantage and prevent misuse.”
“They’re definitely talking out of both sides,” Rao said, describing OpenAI’s messaging as “It’s still really dangerous [to release open models], but we need to take advantage of the community that is building and has influence.”
There’s also a commercial balancing act for OpenAI: It can’t release an open model that competes with its own paid ones. To target AI developers with influence, Rao suggested OpenAI would release a model that is big—but not too big.
Throwing shade at Meta
If OpenAI’s strategic move to open-source a model isn’t solely in reaction to DeepSeek, it may very well be about throwing shade at another big open-source competitor: Meta is set to release the fourth iteration of its open-source model family, Llama, at the end of this month. Llama has notably been released with an open license except for services with more than 700 million monthly active users—meant to limit companies like OpenAI building on it.
“We will not do anything silly like saying that you can’t use our open model if your service has more than 700 million monthly active users,” Altman posted yesterday on X.
“Meta has become the standard-bearer for open-source AI, at least in the West,” said Rao. “If they want to wrestle away some influence in the ecosystem, they have to take on Meta.”
However, Forrester’s Curran said that, Altman’s vague comments aside, there is no reason to think that OpenAI’s open-source model will be any more transparent—in terms of data or training methods, for example—than any other commercial open version from Meta or Mistral.
“I expect it to be much more opaque and closed compared to other open models,” he said, “with significantly less transparency.”